REPORT ON A PHASE I GEOTECHNICAL INVESTIGATION FOR THE PROPOSED "SOUTH HILLS" TOWNSHIP ESTABLISHMENT SITUATED ON PORTION 65 OF THE FARM KLIPRIVIERSBERG 106 IR, GAUTENG PROVINCE

Phase I Geotechnical Investigation

30 September 2009

POSTNET SUITE #8 PRIVATE BAG X9676 POLOKWANE 0700 TEL: (015) 296-1560 2 RHODESDRIFT STREET HAMPTON COURT POLOKWANE 0699 FAX: (015) 296-4158 ENQUIRIES: DH Wessels Pr.Sci.Nat.

REPORT ON A PHASE I GEOTECHNICAL INVESTIGATION FOR THE PROPOSED "SOUTH HILLS" TOWNSHIP ESTABLISHMENT SITUATED ON PORTION 65 OF THE FARM KLIPRIVIERSBERG 106 IR, GAUTENG PROVINCE

Phase I Geotechnical Investigation

WF09071 – SOUTH HILLS

COMPILED BY

WSM LESHIKA CONSULTING (PTY) LTD

P.O.Box 39942 MORELETA PARK PRETORIA 0044 TEL: (012) 997-6760 623 RUBENSTEIN STREET MORELETA PARK PRETORIA 0044 FAX: (012) 997-6768

CONTACT PERSON : DH Wessels Pr.Sci.Nat.

REPORT ON A PHASE I GEOTECHNICAL INVESTIGATION FOR THE PROPOSED "SOUTH HILLS" TOWNSHIP ESTABLISHMENT SITUATED ON PORTION 65 OF THE FARM KLIPRIVIERSBERG 106 IR, GAUTENG PROVINCE

Page

TABLE OF CONTENTS

1.	INTRODUCTION AND TERMS OF REFERENCE	1
2.	OBJECTIVE OF THE DIFFERENT GEOTECHNICAL INVESTIGATIONS	1
3.	AVAILABLE INFORMATION	3
4.	SITE DESCRIPTION	4
4.1	Location and size	4
4.2	Topography, Drainage, Vegetation and Installed Services	4
5.	METHOD OF INVESTIGATION	5
6.	GEOLOGY	6
6.1	General Geology	6
6.2	Soil Profile	6
6.3	Shallow groundwater and/or saturated soil profile	10
7.	GEOTECHNICAL EVALUATION	10
7.1	General Engineering and Material Characteristics	10
7.2	pH and Conductivity of the Soils	12
7.3	Compaction Characteristics of the Soils	12
7.	3.1 Sandy Alluvial Material	13
7.	3.2 Gravelly Pebble Marker Material	14
7.4	Collapse potential	14
7.5	Settlement (Consolidation) Characteristics of the Soils	15
7.6	Bearing capacity and potential differential movement	16
7.7	Slope Stability and Erosion	16
7.8	Excavatability	17
7.9	Permeability of the upper soils	18
8.	SITE CLASSIFICATION	19
8.1	Geotechnical Zonation and Impact of the Geotechnical Character of the Site on the	:
Dev	elopment	19

9.	FOUNDATION OPTIONS AND SOLUTIONS	
10.	BASIC CONSTRUCTION MATERIALS	
10	.1 Pipe bedding (cradle), selected fill (blanket) and backfill (mail fill)	23
L	10.1.1 Pipe bedding (cradle) material	
L	10.1.2 Selected fill (blanket) material	
L	10.1.3 Backfill (main fill) material	
10	.2 Road construction	
10	.3 Fine aggregate for mortar and plaster	
10	.4 Course aggregate for concrete	
10	.5 Soil mattresses	
11.	CONCLUSIONS AND RECOMMENDATIONS	
12.	REPORT PROVISIONS	
13.	REFERENCES	

LIST OF TABLES

- Table 1 : Shallow soil profile summary
- Table 2 : Foundation indicator test results
- Table 3 : Soil conductivity, pH and corrosiveness
- Table 4 : Compaction test results
- Table 5 : Excavation classes
- Table 6: Geotechnical classification for urban development (Partridge, Wood & Brink, 1993)
- Table 7 : Residential site class designations
- Table 8 : Foundation design for buildings founded on compressible soil horizons
- Table 9: Foundation design for buildings founded on collapsible soil horizons
- Table 10 : Geotechnical classification for urban development (Partridge, Wood and Brink 1993)
- Table 11: Typical material properties
- Table 12: Typical material properties after NAVFAC DM7 (1971)
- Table 13 : Shear strength parameters for slow draining cohesive materials
- Table 14 : Shear strength parameters for quick draining non-cohesive materials
- Table 15 : Pipe bedding material and backfill (modified summary according to SABS 1200)
- Table 16 : Summary of specified requirements for coarse aggregate (stone) used in the production of both readymix and site-batched concrete.
- Table 17 : Summary of specified requirements for fine aggregate (sand) used in the
production of both readymix and site-batched concrete.
- Table 18 : Summary of specified requirements for sands used in the production of mortars and plasters.

LIST OF FIGURES

- Figure 1 : Site locality map 1
- Figure 2 : Site locality map 2
- Figure 3 : Contour map
- Figure 4 : 3 Dimensional perspective view of the site
- Figure 5 : Surface drainage vectors
- Figure 6 : Geology map
- Figure 7 : Test pit positions on satellite image
- Figure 8 : Slope angle classification map
- Figure 9 : Basic geotechnical zonation map
- Figure 10 : Fill towards north-eastern corner
- Figure 11 : Fill towards north-eastern boundary
- Figure 12 : Fill towards south-eastern boundary
- Figure 13 : Fill towards south-western portion

LIST OF APPENDICES

Appendix A : Figures

Appendix B : Soil profile descriptions

Appendix D : Soil profile and general photographs Appendix D : Laboratory test results Appendix E : Site class designations and foundation designs Appendix F : Guideline material properties and specifications

PHASE I GEOTECHNICAL PROGRESS REPORT FOR THE PROPOSED "SOUTH HILLS" TOWNSHIP ESTABLISHMENT SITUATED ON PORTION 65 OF THE FARM KLIPRIVIERSBERG 106 IR, GAUTENG PROVINCE

1. INTRODUCTION AND TERMS OF REFERENCE

WSM Leshika Consulting (Pty) Ltd was appointed to conduct a Phase I Engineering Geological Investigation for the proposed "South Hills" Township Development comprising of Erf 1202 South Hills, Holding 88, Klipriviersberg Estate situated on Portion 65 of the farm Klipriviersberg 106 IR, Gauteng Province.

The aim of the investigation is to identify the underlying geological formation and to address the possible geological constraints.

The fieldwork, entailing a site walkover, trial pitting and profile descriptions, was conducted on during August 2009. This report describes the methodology of the investigation and the expected geotechnical constraints with the necessary precautionary measures and recommendations.

2. OBJECTIVE OF THE DIFFERENT GEOTECHNICAL INVESTIGATIONS

Three types of geotechnical investigations are generally conducted for housing developments namely:

- Preliminary Geotechnical Site Investigation,
- Phase I Geotechnical Site Investigation and a
- Phase II Geotechnical Site Investigation.

This investigation is a **Phase I Geotechnical Investigation**.

According to the Generic Specification GFSH-2 (September 2002) "Geotechnical Site Investigations for Housing Developments" the objectives of the different investigations are as follows:

The objective of the <u>Preliminary Geotechnical Site Investigation</u> is to make an initial determination for an Identified Land Parcel as to whether or not such land is:

- a) Fit for human settlements: and
- b) Suitable for project linked subsidy housing development.

Note: The preliminary Geotechnical Site Investigation is incorporated in the project descriptions that form part of the submission to a Provincial Government for the conditional approval of housing subsidies against the selected parcel of land.

The objective of the **Phase I Geotechnical Site Investigation** is, with respect to the identified parcel of land for which a Provincial Government has granted conditional approval of housing subsidies, to:

- a) Identify any potential geotechnical Hazards;
- b) Define the ground conditions and provide Site Classifications including detailed soil profile and groundwater occurrences within the zone of influence of foundation work;
- c) Determine the suitability of Dolomitic Land for subsidy housing developments;
- d) Provide the geotechnical basis for safe and appropriate land use planning, infrastructure design, housing unit design, and the formulation of precautionary measures and risk management procedures;
- e) Broadly classify the land which is to be developed for subsidy housing in terms of the Council's residential Site Class designations;
- f) Designate Dolomitic Land in accordance with the Council's dolomitic area designations and to obtain the Council's in principle acceptance of such designations;
- g) Gather certain Factual Data which has a bearing on the determination of housing subsidy variations and the installation of township services; and
- h) Obtain necessary information for the Council's in principle approval for the enrolment of the project in terms of the Housing Consumers Protection Measures Act (Act 95 of 1998).

Note: The Phase I Geotechnical Site Investigation is undertaken after a Provincial Government has granted conditional approval of housing subsidies. The Report of the Phase I Geotechnical Investigation forms part of the feasibility study report which is required for the confirmation of housing subsidies.

The objective of the **<u>Phase II Geotechnical Site Investigation</u>** is, with respect to the identified parcel of land for which a Provincial Government has confirmed housing subsidies, to:

- a) Confirm and refine the residential Site Class designations in respect of each erf so that the necessary documentation required for the enrolment of individual houses with the Council can take place; and
- b) Confirm and refine, in sites with D2 and D3 dolomitic area designations, that the mandatory precautions have been observed.

Note: Work associated with Phase II can only be undertaken once the erven have been pegged. This phase of the Geotechnical Site Investigation must be co-ordinated with the installation of township services. The Phase II investigation in Dolomitic Areas is essentially a risk management and verification process.

The sections regarding areas underlain by dolomitic land are not of concern for the investigated area as the site is not underlain by dolomitic rock with the potential for sinkhole and/or doline formation.

3. AVAILABLE INFORMATION

The following information was available at the time of the investigation:

- 1:250 000-scale 26728 EAST RAND Geological Sheet;
- 1:50 000-scale 2628 AA and 2628 AC Topographical Sheets;
- Site locality map;
- Contour map;
- Google satellite image.

No preliminary or urban planning geotechnical investigation was available at the time of writing this report.

4. SITE DESCRIPTION

4.1 Location and size

The site is situated between South Rand Road and Southern Klipriviersberg Road forming the southern and northern boundaries of the site and between East Road and Nephin Road forming the western and eastern boundaries respectively. The site investigated area is situated between Booysens and Alberton, south of Johannesburg, Gauteng Province.

The centre site coordinates is as follows (Datum: WGS84): Latitude: -26.251244° Longitude: 28.077669°

The site locality is depicted in Figure 1 and Figure 2, Appendix A.

The investigated area comprise of a total surface area of roughly 265 hectares.

4.2 Topography, Drainage, Vegetation and Installed Services

The site is situated between approximately 1 780 m and 1 677 m above sea level. The general slope direction is towards the north with an elevation difference of 103 m between the upper southern and lower northern portions of the site.

An existing south to north draining river cuts through the centre portion of the site. The western half of the site is thus sloping towards the northeast and the eastern half of the site towards the northwest towards the existing river. Surface water will naturally flow perpendicular to the contours in the direction of the drainage channels and river. The detailed topography can be viewed on the contour map attached as Figure 3, Appendix A. A 3 dimensional perspective view of the site is attached as Figure 4, Appendix A with slope direction vectors depicted in Figure 5, Appendix A indicating the expected direction of surface water flow.

The site is currently not serviced with the usual municipal services. The surrounding area is developed and fully serviced. The services are discussed in detail in the available services report.

5. METHOD OF INVESTIGATION

The fieldwork, entailing a site walkover survey, surface mapping, excavation of test pits, soil profile logging and selected sampling was conducted in August 2009.

Twenty-eight test pits were excavated in the accessible parts of the site in order to identify the areas covered with relatively thick fill, transported or residual horizons. The test pits were excavated by means of a CASE 580 TLB (backhoe).

Shallow rock and/or outcrop were generally encountered in the remainder portions not investigated by test pits.

A suitably qualified and registered Engineering Geologist positioned the test pits, supervised the excavation of the pits, inspected the test pits and recorded the soil profiles using the standard procedures as recommended by SAIEG (1997).

A number of disturbed soil samples were selectively retrieved from representative soil layers and submitted to Soillab Pty. Ltd. for testing. Foundation indicator tests were performed on these samples to determine the particle size distribution and plasticity of the soil. The materials were tested for foundation purposes and therefore the grading was carried out to 0,002 mm. The pH and conductivity of the soil paste from selective soil samples were also measured to determine the corrosiveness of the soils. Compaction tests were also performed on selected samples.

6. GEOLOGY

6.1 General Geology

According to the 1:250 000-scale geological sheet, the site is mainly underlain by (Rt) quartzite, conglomerate and sandy shale of the Turffontein Formation, Central Rand Group, Witwatersrand Supergroup. The geology is depicted in Figure 6, Appendix A.

Conglomerate was encountered in the southern portion of the investigated area with quartzite in the centre to northern portions.

The site is not underlain by dolomite and/or chert and a dolomite stability investigation is therefore not required.

According to the geological map and accompanied explanation no specific mineral deposits are present on or in close proximity of the site.

Economic silver and gold deposits are indicated towards the north-east of the investigated areas and are indicated on Figure 6, Appendix A.

6.2 Soil Profile

The soil profile was investigated by the excavation and inspection of twenty-eight test pits. The positions of the test pits are indicated on Figure 7, Appendix A. The general soil profile is very briefly discussed below with a summary in Table 1. The detailed soil profile descriptions are attached in Appendix B with photographs of the corresponding soil profiles attached in Appendix C.

Rock outcrop is evident throughout the majority of the site. The areas where no rock outcrops are visible are generally covered with very thin topsoil, hillwash or pebble marker horizon underlain by a thin reworked residual horizon. The upper transported and reworked residuum was generally encountered down to less than 1 m below ground level from where very soft to hard rock quartzite and conglomerate were encountered.

The consistencies of the transported and highly reworked residual horizons were generally described as loose to medium dense with an open soil structure. The topsoil and reworked residuum consist mainly of sand originated from the weathering of the quarzites and finer portion of the conglomerates. The typical pebble marker and/or hillwash horizon mainly consist of abundant sub rounded to rounded quartz gravel and pebbles originated from the weathering of the conglomerate horizons with a sandy matrix.

TABLE 1 : ENCOUNTERED DEPTHS OF DIFFERENT SOIL HORIZONS (meters)

Test pit	Topsoil	Fill	Pebble marker or Hillwash	Residuum	Very soft to hard rock Quartzite or conglomerate	Depth of hole	Excavatability conditions in bottom of hole	Water encountered	Site Class designation
TP01	0.40-0.50	0.10-0.40	-	-	0.50-0.60	0.60	TLB refusal	None	S-R/3F 2E
TP02	-	0-0.60	0.60-1.00	1.00-2.40	-	2.40	Soft excavation	None	P(fill)-S2/3D 2ABE
TP03	-	0-1.30	-	-	1.30-1.40	1.40	TLB refusal	None	P(fill)-S2/3D 2ABEF
TP04	-	0-2.00	-	-	-	2.00	Soft excavation	None	P(fill)-S2/3D 2ABE
TP05	0-0.25	-	-	-	0.25-0.35	0.35	TLB refusal	None	R/3F 2E
TP06	-	0-1.60	-	-	1.60-1.70	1.70	TLB refusal	None	P(fill)-S2/3D 2ABE
TP07	-	0-0.80	-	-	0.80-0.90	0.90	TLB refusal	None	P(fill)-S2/2ABDEF
TP08	-	0-1.30	-	-	1.30-1.40	1.40	TLB refusal	None	P(fill)-S2/3D 2ABEF
TP09	0-0.20	-	Rew→	0.20-0.45	0.45-0.50	0.50	TLB refusal	None	R/3F 2E
TP10	0-0.10	-	Rew→	0.10-0.40	0.40-0.50	0.50	TLB refusal	None	R/3F 2E
TP11	0-0.10	-	Rew→	0.10-0.25	0.25-0.35	0.35	TLB refusal	None	R/3F 2E
TP12	0-0.10	-	Rew→	0.10-0.15	0.15-0.20	0.20	TLB refusal	None	R/3F 2E
TP13	0-0.05	-	Rew→	0.05-0.10	0.10-0.15	0.15	TLB refusal	None	R/3F 2E
TP14	-	0-3.00	-	-	-	3.00	Soft excavation	None	P(fill)-S2/3D 2E
TP15	-	0-3.00	-	-	-	3.00	Soft excavation	None	P(fill)-S2/3D 2E
TP16	-	0-0.70	Rew→	0.70-1.50	1.50-1.60	1.60	TLB refusal	None	P(fill)-S2/2BDE
TP17	0-0.20	-	0.20-0.85	0.85-1.35	1.35-1.40	1.40	TLB refusal	None	P(fill)-S2-S1/2BDE
TP18	-	0-0.45	0.45-1.05	1.05-1.25	1.25-1.30	1.30	TLB refusal	None	S2-S1/2BDEF
TP19	0-0.20	-	0.20-0.65	0.65-0.75	0.75-0.85	0.85	TLB refusal	None	S1-S-R/3F 2BDEF

Test pit	Topsoil	Fill	Pebble marker or Hillwash	Residuum	Very soft to hard rock Quartzite or conglomerate	Depth of hole	Excavatability conditions in bottom of hole	Water encountered	Site Class designation
TP20	0-0.20	-	0.20-0.70	0.70-1.00	1.00-1.20	1.20	TLB refusal	None	S1-S-R/2BDEF
TP21	0-0.10	-	0.10-0.60	0.60-0.90	0.90-0.95	0.95	TLB refusal	None	S1-S-R/2BDEF
TP22	0-0.10	-	0.10-0.25	0.25-0.35	0.35-0.45	0.45	TLB refusal	None	R/3F 2BE
TP23	0-0.10	-	0.10-0.25	0.25-0.35	0.35-0.45	0.45	TLB refusal	None	R/3F 2BE
TP24	-	0-1.70	1.70-2.00	-	2.00-2.30	2.30	Gradual refusal	None	P(fill)-S2/3D 2BE
TP25	0-0.15	-	0.15-0.45	0.45-0.60	0.60-0.70	0.70	TLB refusal	None	S-R/3F 2BE
TP26	0-0.10	-	0.10-0.25	0.25-0.60	0.60-0.70	0.70	TLB refusal	None	S-R/3F 2BE
TP27	0-0.10	-	0.10-0.25	-	0.25-0.35	0.35	TLB refusal	None	S-R/3F 2BE
TP28	0-0.30	-	0.30-2.00*	2.00-3.00	-	3.00	Soft excavation	None	P(flooding)-S2/3D 2ABE

* - Sandy transported alluvial material; TLB refusal – Intermediate to hard excavation (SANS)

6.3 Shallow groundwater and/or saturated soil profile

No shallow groundwater or seepage water was encountered in any of the test pits excavated during August 2009.

Seasonal shallow seepage water (mainly on the contact between the upper transported and lower highly to unweathered rock) and saturated soil conditions is expected during and towards the end of the wet season, especially during and after heavy and/or continuous downpours. The slight ferruginisation (orange mottles and staining) is an indication of seasonal saturated conditions.

The natural expected flow direction of the shallow seepage water is depicted in Figure 5, Appendix A.

7. GEOTECHNICAL EVALUATION

The Geotechnical Evaluation is based on the visual observations, soil profile descriptions, field interpretations and laboratory test results.

7.1 General Engineering and Material Characteristics

The foundation indicator test results from the selectively retrieved samples are summarized in Table 2.

Test	Depth	_	Soil composition			Atterberg Limits		LS			AASHTO /	
pit	(m)	Description	Clay %	Silt %	Sand %	Gravel %	LL %	PI %	%	GM	Activity	Unified classification
TP05	0-1.5	Reworked topsoil	0	15	48	37		NP	0.0	1.74	Low	A-1-b (0) / SC
TP16	0.7-1.5	Residual quartzite backfill	0	17	45	38	18	3	1.5	1.80	Low	A-1-b (0) / SM
TP25	0-0.15	Topsoil	0	28	68	4	22	4	2.0	1.07	Low	A-2-4 (0) / SC & SM
TP25	0.15-0.45	Pebble marker	0	6	24	69	18	4	1.5	2.42	Low	A-1-a (0) / GP & GC
TP25	0.45-0.60	Reworked residual to totally weathered quartzite	0	19	70	11		SP	0.5	1.40	Low	A-1-b (0) / SC
MOD (A) TP28		Alluvial sand	8	24	63	5	21	8	4.0	0.99	Low	A-4 (0) / SC
MOD (B)		Pebble marker	0	8	26	66	20	4	1.5	2.33	Low	A-1-a (0) / GW & GC
MOD (C)		Pebble marker	0	7	14	79	22	5	2.0	2.53	Low	A-1-a (0) / GP & GC

TABLE 2 : FOUNDATION INDICATOR TEST RESULTS

Rew – Reworked; Ferr – Ferruginised; Coll – Colluvium, PM – Pebble Marker; Undist – Undisturbed; LL – Liquid limit; PI – Plasticity index; LS – Linear shrinkage; GM – grading modulus; SP – slightly plastic

The test results on the soil samples indicate the following:

- The *topsoil and reworked colluvium and residual material* retrieved from test pits TP05, TP25 and TP28 generally grades as gravelly silty sand with a very low percentage of clay. The material is generally non-plastic to only slightly plastic, with a low linear shrinkage, low potential activity and a moderate grading modulus. The material generally classifies as "SC" and "SM" according to the Unified Soil Classification System which represents sandy materials.
- The <u>pebble marker material</u> retrieved from the various test pits generally grades as sandy gravel with a low percentage of silt and no clay. The material is generally non-plastic to only slightly plastic, with a low linear shrinkage, low potential activity and a high grading modulus. The material generally classifies as "GW", "GP" and "GC" according to the Unified Soil Classification System which represents gravelly material.

The general properties and characteristics for materials classifying as "GW", "GP", "GC", "SM" and "SC" are summarized in Table 11 to Table 14, Appendix F.

7.2 pH and Conductivity of the Soils

The pH and conductivity (mS/m⁻¹) of soil pastes of selective samples have been measured to determine the acidity and potential corrosiveness of the soils. The results are indicated in Table 3.

Sample Position	Sample Depth (m)	рН	Electrical Conductivity of soil paste (mS/m)	Soil corrosiveness based on the electrical conductivity
TP05	0-1.5	5.53	12.7	Mildly corrosive
TP16	0.7-1.5	7.06	13.6	Mildly corrosive
TP25	0-0.15	4.81	20.9	Corrosive
TP25	0.15-0.45	4.38	11.9	Mildly corrosive
TP25	0.45-0.60	5.07	9.9	Not generally corrosive
MOD (A)		4.82	7.5	Not generally corrosive
MOD (B)		4.85	3.6	Not generally corrosive
MOD (C)		4.65	3.0	Not generally corrosive

TABLE 3 : SOIL CONDUCTIVITY, PH AND CORROSIVENESS

The results indicate soils that are generally potentially mildly corrosive to ferrous metals. The results indicate that the alluvial sandy material and pebble marker material on which the compaction testing was conducted are not generally corrosive to ferrous metals. Although the results indicated that the soils are not highly corrosive to ferrous metals it will be good practice to apply the necessary corrosion protection for ferrous materials as some of the soils are potentially mildly corrosive to corrosive to ferrous metals. Alternatives such as plastic / PVC pipes rather that steel pipes can also be considered where practical.

7.3 Compaction Characteristics of the Soils

Compaction tests (Mod. AASHTO) were conducted on three of the disturbed samples retrieved from the sandy alluvial material and pebble marker horizons.

The test results are summarised in Table 4 (and Table 2 for foundation indicator results) with the laboratory results attached in Appendix D.

						CBR at various					TRB							
TP no	Depth (m)	n Material	OMC	$\frac{MDD}{(ka/m^3)}$	Swell	co	mpa	ction	effor	rts	COLTO							
по	(111)	сурс		(-10) /	(,,,,,	90 %	93 %	95 %	98 %	100 %	Unified							
MOD (A)											A-4 (0)							
		- Silty sand	8.4	2 097	2 097	2 097	2 097	2 097	2 097	2 097	2 097	0.1	15	20	24	35	44	G7
											SC							
1 (05		a 1		2 154							A-1-a (0)							
MOD (B)		Sandy	6.5		2 154	0.0	16	16 25	35	51	66	G6						
(D)		Siaver																GW&GC
MOD		a 1									A-1-a (0)							
MOD		Sandy	6.5	2 1 5 4	0.0	14	26	40	62	82	G6							
(\mathbf{C})		Siaver									GP&GC							

TABLE 4 : COMPACTION TEST RESULTS

OMC = Optimum moisture content; MDD = Maximum dry density (Mod AASHTO); Swell = % Swell soaked at 100% Mod. AASHTO compaction; Coll = Colluvium; Ferr = Ferruginised

7.3.1 Sandy Alluvial Material

The results indicate that the sandy colluvial material have an optimum moisture content of 8,4 % and a maximum dry density of 2 097 kg/m³. 0.1 % swell are expected (soaked at 100% Mod. AASHTO compaction effort). The CBR increases from 15 at 90% compaction effort to 24 and 44 at 95% and 100% compaction efforts which indicate good compaction characteristics.

The material has a Liquid Limit (LL) of 21, a Plasticity Index (PI) of 8, Linear Shrinkage (LS) of 4,0 and a Grading Modulus (GM) of 0,99. The foundation indicator testing predicts a low soil heave potential. The material grades as a gravelly (5 %), clayey (8 %), silty (24 %) sand (63 %).

This sandy alluvial material classify as "G7" according to the COLTO classification. Material classifying as "G7" is usually suitable for subgrade and selected layer in road construction. The material will not be suitable for construction of the upper road pavement. The material classify as "SC" according to the Unified Soil Classification System. Materials classifying as "SC" are generally fair for use as subgrade material, poor for subbase material and not suitable for base material in road construction. These materials generally have "good" to "fair" compaction characteristics with a low compressibility when compacted.

7.3.2 Gravelly Pebble Marker Material

The results indicate that the gravelly pebble marker material have an optimum moisture content of 6,5 % and a maximum dry density of 2 154 kg/m³. No swell are expected (soaked at 100% Mod. AASHTO compaction effort). The CBR increases from 14 and 16 at 90% compaction effort to 35 and 40 at 95% and 66 to 82 at 100% compaction efforts which indicate good compaction characteristics.

The materials have an average Liquid Limit (LL) of 21, a Plasticity Index (PI) of 4 to 5, Linear Shrinkage (LS) of 1,5 to 2,0 and a Grading Modulus (GM) of 2,33 to 2,53. The foundation indicator testing predicts a low soil heave potential. The material grades as silty (7 to 8 %), sandy (14 to 26 %) gravel (66 to 79 %) with no clay.

This gravel pebble marker horizon classify as "G6" according to the COLTO classification. Material classifying as "G6" is usually suitable for subgrade, selected layer and subbase in road construction.

The material classify as "GW", "GP" and "GC" according to the Unified Soil Classification System. The general material properties and expected performance for use in road construction are summarized in Table 11 and Table 12, Appendix F.

7.4 Collapse potential

The upper sandy topsoil, colluvial and reworked sandy residual material is generally slightly open structured and pinholed with open root channels with localised termite activity. These horizons have a moderate to high collapse potential depending on the moisture content at time of construction.

The combined thickness of the potentially collapsible horizon is however generally relatively thin and are not considered a major concern for the proposed development. Thicker collapsible transported alluvial sandy material was encountered adjacent to the river towards the northern portion of the site. This material has a high collapse potential but are expected to be below the 1:100 year floodline and thus outside the developable area and not considered a major geotechnical constraint for the proposed development.

7.5 Settlement (Consolidation) Characteristics of the Soils

There are basically three components to settlement namely immediate settlement (also referred to as elastic settlement), primary consolidation settlement and secondary consolidation (also referred to as creep).

Immediate settlement takes place as a load is exerted on the soil mainly as a result of distortion of the soil. As poor water begins to flow out of the soil a time dependant decrease in volume occurs which is termed consolidation settlement. This settlement will continue until a conditions of constant effective stress is reached. This primary consolidation settlement takes place generally in fine grained materials (fairly high percentage of clay or silt). Secondary consolidation settlement is not considered a concern as this type of settlement usually occurs in soft organic clays where plastic flow within the soil mass results in displacement of the soil particles.

Only primary consolidation settlement are calculated for housing construction and this primary consolidation are not considered a major concern on this site as the soils generally contains low percentages of silt and very low percentages to no clay. Primary consolidation settlement is expected in the saturated alluvial sandy material adjacent to the river towards the northern portion of the site. This area is however expected to be outside the developable portion of the site.

Settlement/consolidation resulting in unwanted differential movement and damage to the proposed units will occur if founded on the low density fill areas as indicated on the zonation map. Rehabilitation of these fill areas may include; complete removal of the fill; partially remove upper fill, compact and backfill with inert material (properly compacted in layers) together with foundation modifications.

7.6 Bearing capacity and potential differential movement

The upper transported and residual material originating from the weathering of the interlayered quartzite and conglomerate mainly consist of sand (originating from weathering of the quarzites) with varying amounts of gravel (originating from weathering of the conglomerate). The soils are non-cohesive as very low percentages of clay are present.

The in situ material consistency upper reworked topsoil, pebble marker and highly reworked residual horizons were generally described as loose to medium dense at the moisture content at the time of the investigation which can be correlated with allowable bearing pressures of between 10 to 50 kPa (for the loose material) and between 50 and 100 kPa (for the medium dense material). The soils are however open structured and have a high collapse potential depending on the moisture content at the time of construction. A decrease in allowable bearing pressure of up to 50 % can be expected on saturation of the soils. An average allowable bearing pressure of between 35 and 60 kPa is estimated for the uncompacted upper topsoil and colluvial material.

TLB refusal is generally reached in very soft quartzite and conglomerate rock with an estimated allowable bearing pressure of between 1 to more than 3 MPa depending on the degree of weathering. The moderately to slightly weathered quartzite and conglomerate can have an Uniaxial Compressive Strength (UCS) of between 25 to 50 MPa with a UCS of >150 for the unweathered rock.

7.7 Slope Stability and Erosion

Steep slopes are present next to the drainage gully's, small drainage channels and river. These areas will most probably be environmental sensitive areas or subject to flooding (localised towards the lower slopes).

The steep areas will most probably be situated outside the developable areas and are not considered to be a constraint from a stability point of view for the proposed residential units.

A detailed slope stability analysis however needs to be considered for any proposed high load bearing foundations placed on or adjacent to the steep slopes such as foundations for possible bridge, road or pipeline crossings.

The slope stability analysis is site specific and falls outside the scope of this Phase I Geotechnical investigation.

The slope angles are discussed in more detail in the Geotechnical Evaluation section of this report.

The upper sandy soils have an intermediate to high susceptibility to erosion due to the slope angles and sandy nature of the material. Erosion is expected especially after the surface vegetation has been removed and after heavy and/or continuous downpours where congress water flow are expected.

7.8 Excavatability

Shallow rock and/or rock outcrop were identified throughout the majority of the investigated area.

Rock outcrop represents roughly 50% of the surface area of the site. The remainder portions is generally covered with a thin topsoil, hillwash or pebble marker and highly reworked residual horizon with an average combined thickness of roughly < 0.5 m to 1.0 m to 1.5 m in localised areas.

Roughly 10,2 hectares of the site is covered with varying types and thickness of fill material that will be excavatable down to average depth of roughly +1,5 to 2,5 m below ground level. The concerned fill covers roughly 3,8 % of the total surface area of the investigated area.

Excavatability of materials can be classified in five different categories according to the SABS 1200 D-1988 standards. Table 5 below is a summary of the SABS standards (refer to SABS 1200D-1988 documents for detailed classification):

Sample Position	Simplified description of typical material properties
Soft excavation	Material that can be efficiently removed or loaded, without prior ripping, by means of a bulldozer, tractor-scraper, track type front-end loader or back-acting excavator without the use of pneumatic tools such as paving breakers
Intermediate excavation	Material that can be efficiently ripped by a bulldozer fitted with a single-tine ripper or with a back-acting excavator of flywheel power exceeding 0,10 kW per mm of tined-bucket width or the use of pneumatic tools before removal by equipment equivalent to that specified above.
Hard rock excavation	Excavation in material that cannot, before removal, be efficiently ripped by a bulldozer. This is material that cannot be efficiently removed without blasting or without wedging and splitting.
Boulder excavation (Class A)	Excavation in material containing more than 40 % by volume boulders of size in the range of 0,03-20m3, in a matrix of soft material or smaller boulders.
Boulder excavation (Class B)	Excavation in material containing 40 % or less by volume boulders of size in the range of 0,03-20m3, in a matrix of soft material or smaller boulders and which require individual drilling and blasting in order to be loaded by a track type front-end loader or back-acting excavator.

 TABLE 5 : EXCAVATION CLASSES (Modified SABS 1200D)

Roughly + 50% "intermediate excavation" becoming "hard excavation" conditions are anticipated down to 1,50 m below ground level from where most of the materials will be intermediate to hard excavation depending on the locality and degree of weathering of the rock.

The abovementioned percentages are only rough estimations.

7.9 Permeability of the upper soils

No infiltration tests or laboratory tests were performed to determine the permeability of the soil.

The fine sandy reworked topsoil and colluvial material will probably have a hydraulic conductivity of between approximately 1 x 10^{-2} mm/s and 1 x 10^{-4} mm/s. This is typical values for fine to medium grain sandy material.

The particle size analysis can provide more accurate estimates of the permeability of soils. Hazen's formula for approximate values of permeability is widely used and is used for the purposes of this investigation.

More detailed and specific testing is required for groundwater infiltration or flow modelling purposes.

8. SITE CLASSIFICATION

The investigated area has been broadly classified into four basic Site Class Designation zones (Figure 9, Appendix A), based on the above constraints and the criteria as set out in the NHBRC (1999) guideline document of which the appropriate tables have been included in Appendix E. The zones with different slope angles as classified by Partridge, Wood and Brink, 1993 are depicted in Figure 8, Appendix A. The classification and foundation recommendations are based on the field observations, soil profile descriptions and visual interpretations.

8.1 Geotechnical Zonation and Impact of the Geotechnical Character of the Site on the Development

Table 6 summarizes the general geotechnical constraints pertaining to urban development as proposed by Partridge, Wood and Brink (1993). The "Class" column indicates the severity of the particular constraint. The complete classification table is attached as Table 10, Appendix E.

TABLE 6 : GEOTECHNICAL CLASSIFICATION FOR URBAN DEVELOPMENT(PARTRIDGE, WOOD & BRINK, 1993)

	Constraint	S	Site Condition		Class			
Α	Collapsible soil.	Potentially collapsible he in thickness. Low collap high soil collapse will be during Phase II investiga	Potentially collapsible horizons generally less than 750 mm in thickness. Low collapse expected. Very localised areas of high soil collapse will be present and needs to be identified during Phase II investigation.					
В	Seepage.	Seasonal shallow perched seepage water and/or saturated upper soil profiles are expected, especially after heavy and/or continuous downpours.						
C	Active soil.	Low soil heave expected	Low soil heave expected.					
D	Compressible soil.	Localised areas of medium oil compressibility will be present and needs to be identified during Phase II investigation. High compressibility in low density fill areas expected.						
E	Erodability of soil.	Intermediate soil erodability expected due to gradient and sandy nature of the upper soil horizons soils, especially after the vegetation has been cleared and after heavy and/or continuous downpour where congress water flow are expected.						
F	Difficulty of excavation to 1.5m depth.	Rock more than 40% of volume down to 1,5 m below ground level expected.						
G	Undermined ground.	No undermined ground.						
Н	Instability in areas of soluble rock.	No soluble rock. Site is not underlain by chert or dolomite rock.						
Ι	Steep slopes.	Areas where slope angles are between: 2 and 6°, 6 and 12° and >12° are present. (Refer to attached Figure 8, Appendix A).						
J	Areas of unstable natural slopes.	High risk areas outside developable areas. Steep slopes needs to be evaluated if any structures are to be placed near vertical slopes.						
K	Areas subject to seismic activity.	Less than 10% probability of an event less than 100 cm/s^2 within 50 years.						
L	Areas subject to flooding.	Localised seasonal flooding expected. Refer to floodline report for details. The zone will be incorporated into the final report.						
Geotechnical classes:		Most favourable (1)	Intermediate (2)	Least favou	rable (3)			

The main expected geotechnical constraints on this site are:

- Shallow severe excavation difficulty.
- Areas with steep slope angles present.
- Rock outcrop.
- Shallow seasonal seepage water and/or saturated conditions.
- Localised areas of uncontrolled and uncompacted fill.
- Upper thin collapsible/compressible soil horizon.

Based on the available information the site is considered four geotechnical zones (SAICE 1995 / Partridge, Wood and Brink 1993):

Zone I:P(flooding) / 3FILZone II:P(outcrop and steep slopes)-R / 3FIZone III:P(fill)-S2 / 3DZone IV:C1-R / 2-3F 1AB 2E

The approximate boundaries of the zones is depicted in Figure 9, Appendix A with more detailed outlines of Zone III in Figures 10, 11, 12 and 13, Appendix A. Zone I (area situated below 1:100 year floodline) is a rough estimate and the planners and design engineers should refer to the detailed floodline report for the exact boundaries of this zone.

The zones representing different slope angles as recommended by Partridge, Wood and Brink, 1993 is depicted in Figure 8, Appendix A as:

- Zone a: < 2°,
- Zone b: 2° to 6°
- Zone c: 6° to 12°
- Zone d: >12°

9. FOUNDATION OPTIONS AND SOLUTIONS

The following are recommended for the different geotechnical zones:

Zone I: P(flooding) / 3FIL

- Determination of 1:100 year floodline (refer to floodline report).
- No development below the 1:100 year floodline.
- Proper drainage and risk management.

Zone II: P(Rock outcrop and steep slopes)-R / 3FI

• Exclude from development due to cost implications for construction on steep slopes and severe excavation conditions due to shallow rock. This area is also probably an environmental sensitive area. Refer to environmental impact report to be finalised.

Zone III: P(fill)-S2 / 3D

- Rehabilitate the fill areas by removal of the low density fill and replace and compact by inert material to design specifications or;
- Cover fill areas with a thin soil covering according to guideline specifications and exclude these areas from development.

Zone IV: C1-R / 2-3F 1AB 2E

- This larger portion of this zone is suitable for the proposed housing development despite the shallow rock and/or outcrop.
- *Normal foundations* (strip footing or slab-on-the-ground construction) will be sufficient where shallow competent material prevails (the majority of the developable area)
- Only *very localised* areas where *modified normal foundations* or *compaction of in situ soils below individual footings* will be necessary to prevent damage to the proposed units are present and needs to be identified during the Phase II Geotechnical investigation.

The above foundation recommendations are according to the NHBRC Home Builders Manual (1999) for single storey masonry structures (Table 7, Table 8 and Table 9, Appendix E).

Foundation precautionary measures also need to be implemented where foundations span composite geotechnical conditions such as shallow competent rock and collapsible or compressible soil. These composite conditions can result in unwanted differential movement and damage to the proposed structures.

It is recommended that the structural engineers calculate the best economical foundation option for the proposed units.

A competent engineer should be responsible for the final foundation design.

10. BASIC CONSTRUCTION MATERIALS

The suitability of the encountered materials for different construction materials are briefly discussed below with summaries of material specifications in Appendix F. This section is only for guideline purposes and the SANS documents needs to be consulted for the more detailed material specifications and requirements. More detailed sampling and specific testing are recommended to determine the suitability of the existing on-site materials for construction material purposes.

10.1 Pipe bedding (cradle), selected fill (blanket) and backfill (mail fill)

Below are summaries of material specifications for pipe bedding (cradle), selected fill (blanket) and backfill (mail fill). Refer to the SANS standards for more detailed specifications.

10.1.1 Pipe bedding (cradle) material

The following are simplified guideline specifications for pipe bedding (cradle) material:

- PI (Plasticity Index) of less than 18
- No organic material present
- Grading limit between 0,6 and 19 mm
- Compactability factor > 4
- CBR of at least 3% at the minimum specified density compacted at Optimum Moisture Content

The materials have a PI of between 0 and 8. The materials has a CBR of at least 3%. The materials will probably have a compactability factor >4. The materials contain relatively low percentages of organic matter mainly in the form of grass roots. The matrix of the materials encountered on site however generally has an abundant of fines originating from the weathering of the interlayered sandstone, shale and conglomerate.

An average of between roughly 30 % to 70% of the material grades < 0,6 mm. Approximately 30 % to 37 % of the material grades > 19 mm resulting in unwanted amounts of course fragments. Large volume loss will be experienced if graded to the required SABS specifications.

10.1.2 Selected fill (blanket) material

According to the SANS standards selected fill material shall be material that has a PI not exceeding 6 and that is free from vegetation and from lumps and stones of diameter exceeding 30 mm.

The colluvium and pebble marker material has a PI of < 6. The sandy colluvium and pebble marker material may used for selected fill (blanket) material if the organic matter and stones of > 30 mm are removed. Large volume losses (between 15 % and 30 %) are expected if the pebble marker material is graded to the required specifications.

10.1.3 Backfill (main fill) material

The following are simplified guideline specifications for backfill (main fill) for pipe bedding material (for backfill not subject to traffic loads):

- Excludes stones of average dimension exceeding 150 mm.
- Not more than 10% rock or hard fragments retained on a sieve of nominal aperture size 50 mm.
- Material should not contain large clay lumps that do not break up under the action of compaction equipment
- No or little organic material

The SANS 1200DB-1989 standards specifies that materials with a PI<12, CBR of >15 % at specified density be placed in the upper 150 mm of the subgrade, and a minimum CBR of 7 % if the backfill is to be placed lower in the subgrade for areas subject to loads from road traffic.

The materials encountered on site will be suitable for backfill material if the large stones are removed.

The sandy colluvial and pebble marker material can be used for upper backfill in areas subject to traffic loads (refer to SANS1200DB-1989 abovementioned specifications). The CBR values of the materials tested were 15, 16 and 14 at 90 % Mod. AASHTO compaction effort and 20, 25 and 26 at 93 % compaction effort. Refer to compaction test results.

10.2 Road construction

Compaction tests were performed on three selectively retrieved samples.

The tests were conducted on the sandy alluvial material encountered next to the existing river and on the gravelly pebble marker material encountered mainly towards the southern portion of the investigated area.

The results and expected performance of the material for road building purposes are discussed under section 7.3 Compaction Characteristics.

10.3 Fine aggregate for mortar and plaster

Modified specifications for fine aggregates for mortar and plaster are summarized in Table 18, Appendix F.

The SANS1090 document needs to be consulted for the detailed material specifications and requirements.

The sandy colluvial material may be considered for fine aggregates for mortar and plaster if graded to the specifications. According to the SANS standards natural sand should grade as follows \pm 90 % passing 4,75 mm sieve and \pm 5 % passing 0,150 mm sieve. 15 % to 50 % of the material grades passes the 0,150 mm sieve. Relatively large volume losses will however be experienced if graded to specifications.

Additional testing are however required and this needs to be investigated during the construction materials investigation.

It is recommended that fine aggregates be obtained from the nearest source.

10.4 Course aggregate for concrete

The gravel obtained from the pebble marker originating from the weathering of the conglomerate rock can be used for course aggregate for concrete depending on the specifications. It must however noted that the gravel generally have polished surfaces and has a round shape. No testing was conducted on the gravel for the use as course aggregate for concrete. *It is recommended that suitable material be obtained from the nearest source.*

The SANS1083 needs to be consulted for the material specifications and requirements for use as course aggregates in concrete.

10.5 Soil mattresses

The soils encountered generally have good compaction characteristics with a low compressibility when compacted. Depending on the structures to be erected and the design specifications the sandy colluvial material and gravel pebble marker horizon may be used for the construction of soil mattresses (refer to lab results for maximum dry densities, optimum moisture content and grading of the materials).

11. CONCLUSIONS AND RECOMMENDATIONS

The site is **not** underlain by dolomite rock. A dolomite stability investigation is therefore **not** required.

Rock outcrop is evident throughout the majority of the site. The areas where no rock outcrops are visible are generally covered with very thin topsoil, hillwash or pebble marker horizon underlain by a thin reworked residual horizon.

The upper transported and reworked residuum was generally encountered down to less than 1 m below ground level from where very soft to hard rock quartzite and conglomerate were encountered.

The main expected geotechnical constraints on this site are:

- Shallow severe excavation difficulty.
- Areas with steep slope angles present.
- Rock outcrop.
- Shallow seasonal seepage water and/or saturated conditions.
- Localised areas of uncontrolled and uncompacted fill.
- Upper thin collapsible/compressible soil horizon.

Based on the available information the site is considered four geotechnical zones (SAICE 1995 / Partridge, Wood and Brink 1993):

Zone I:	P(flooding) / 3FIL
Zone II:	P(outcrop and steep slopes)-R / 3FI
Zone III:	P(fill)-S2 / 3D
Zone IV:	C1-R / 2-3F 1AB 2E

No construction should be allowed below the 1:100 year floodline. It is recommended that construction be excluded from the areas represented by shallow rock and steep slopes as indicated on Figure 8 and Figure 9, Appendix A. Zone II (Figure 9) and Zone c and Zone d (Figure 8).

Normal foundations will be sufficient for the majority of the site if placed on the competent residual or highly to slightly weathered rock. Foundation modifications will be necessary where foundations span composite geotechnical conditions such as competent shallow rock and compressible/collapsible soils which will result in differential movement and damage to the proposed units.

It is recommended that the fill areas be excluded from the development or that the fill areas be rehabilitated with proper foundation modifications to prevent or limit damage to the proposed units.

Damp proofing will be good practice to prevent moisture damage to the foundations and walls as seasonal saturated soil profiles and/or shallow seasonal seepage water are expected.

A phase II geotechnical investigation will be necessary for NHBRC enrolment.

12. REPORT PROVISIONS

While every effort is made during the fieldwork phase to identify the various soil horizons, areas subject to perched water table, areas of poor drainage, areas underlain by hard rock, and to estimate their distributions, it is impossible to guarantee that isolated zones of poorer foundation materials or harder rock have not been overlooked.

For this reason, this investigation has sought to highlight areas of potential foundation, groundwater and excavation problems, as well as to provide prior warning to the Town and Regional Planners and Consulting Engineers.

A competent geotechnical engineer or engineering geologist should inspect foundation and open service trenches to determine the variance from the above assessment. NHBRC enrolment of the site can only be completed once this Phase II geotechnical site investigation has been executed.

The present site zoning is based on the NHBRC Manual with the guideline site class designation specifically for single-storey masonry units.

Julents

DH WESSELS Pr.Sci.Nat. ENGINEERING GEOLOGIST SACNASP registration number: 400076/8

13. **REFERENCES**

Das, B. M., 1990. Principles of Geotechnical Engineering. 2nd Ed. PWS-Kent. USA.

Jennings, J.E.B., Brink, A.B.A., Williams, A.A.B., 1973. Revised guide to Soil Profiling for Civil Engineering Purposes in Southern Africa. The Civil Engineer in SA. pp 3-12. January 1973.

Partridge, T.C., Wood, C.K., Brink, A.B.A., 1993. Priorities for Urban Expansion within the PWV Metropolitan Region: The primacy of geotechnical constraints. South African Geographical Journal, Vol 75, pp 9-13.

National Home Builders Registration Council, 1995. Standards and Guidelines. HBRC.

South African Bureau of Standards, 1988. Standardized Specification for Civil Engineering Construction. DA: Earthworks (Small Works). SABS 1200 DA-1988, (As amended 1990).

South African National Standards. 2001. Drinking Water. SANS 241:2001.

SAICE. 1995. Code of Practice: Foundations and Superstructures for Single Storey Residential Buildings of Masonry Construction. Joint Structural Division, Johannesburg. First Edition.

SAIEG, 1996. Guidelines for Soil and Rock Logging. SAICE/SAIEG.

Weinert, H.H., 1980. The Natural Road Construction Materials of Southern Africa. Academica. Cape Town.

SANS 1083:2002, Aggregates from natural sources - Aggregates for concrete, Pretoria: South African Bureau of Standards, 2002.

SANS 1090:2002, Aggregates from natural sources - Fine aggregates for plaster and mortar, Pretoria: South African Bureau of Standards, 2002.

APPENDIX A

(FIGURES)

FLOODLINES

FIGURE 3

Legend:

1 : 100 year Floodline 1 : 50 year Floodline

Ŵ

-0.6	Very high gradients
- 0.55	
-0.5	
-0.45	
-0.4	
- 0.35	
-0.3	
-0.25	
-0.2	
-0.15	
-0.1	
- 0.05	Low gradients

This drawing is only a preliminary drawing and can only be used for guideline purposes

"South Hills"

SLOPE ANGLE ZONATION AND GENERAL LEGEND

Zone a - Slope angle between 0 and 2 degrees

Zone b - Slope angle between 2 and 6 degrees

- Zone c Slope angle between 6 and 12 degrees
- Zone d Slope angles > 12 degrees
- Approximate site boundary

General recommendations

- Zone a: (Zone represented with light grey coloring) Suitable for proposed development. Slope angles of < 2 degrees. Water ponding may occur after heavey and/or continious downpours. Proper surface drainage must be installed due to very low slope angles. Zone b: (Zone represented by no coloring) Suitable for proposed development. Slope angles of between 2 and 6 degrees. Proper surface drainage to prevent erosion. Zone c: (Zone represented by orange coloring) Recommended to be excluded for this development. Slope angles of between 6 and 12 degrees. Mainly prominent rock outcrop in this zone and steep angles in fill areas. Zone d: (Zone represented by red coloring) Not suitable for any development. Slope angles of > 12 degrees up to +60 degrees. Mainly prominent rock outcrop in this zone with very steep slope angles. Project/reference number: WF09071 Drawing date: 2009-10-05 **DH Wessels** Designed by:
- Company: WSM LESHIKA Consulting (Pty) Ltd.Contact person:DH WesselsE-mail:hwessels@wsmleshika.co.zaOffice no:012 997 6760

Figure 8 : Slope Zonation Map

"South Hills"

LEGEND

Zone I: P(flooding) / 3FIL Zone II: P(Outcrop and steep slopes)-R / 3FI Zone III: P(fill)-S2 / 3D Zone IV: C1-R / 2-3F 1AB 2E Approximate site boundary

BASIC RECOMMENDATIONS FOR ZONES:

Zone I: P(flooding) / 3FIL

- Determination of 1:100 year floodline (refer to floodline report).
- No development below the 1:100 year floodline.
- Proper drainage and risk management.

Zone II: P(Rock outcrop and steep slopes)-R / 3FI

Exclude from development due to cost implications for construction on steep slopes and severe excavation conditions due to shallow rock. This area is also probably an environmental sensitive area. Refer to environmental impact report to be finalised.

Zone III: P(fill)-S2 / 3D

- Rehabilitate the fill areas by removal of the low density fill and replace and compact by inert material to design specifications or;
- Cover fill areas with a thin soil covering according to guideline specifications and exclude these areas from development.

Zone IV: C1-R / 2-3F 1AB 2E

- This larger portion of this zone is suitable for the proposed housing development despite the shallow rock and/or outcrop.
- Normal foundations (strip footing or slab-on-the-ground construction) will be sufficient where shallow competent material prevails (the majority of the developable area)
- Only very localised areas where modified normal foundations or compaction of in situ soils below individual footings will be necessary to prevent damage to the proposed units are present and needs to be identified during the Phase II Geotechnical investigation.

Project/reference	e number:	WF09071
Drawing date:		2009-10-05
Designed by:		DH Wessels
Company: WSM	LESHIKA Co	onsulting (Pty) Ltd.
Contact person:	DH Wessels	
E-mail:	hwessels@v	vsmleshika.co.za
Office:	012 997 676	0

Figure 9 : Geotech Zonation Map

APPENDIX B:

(SOIL PROFILE DESCRIPTIONS)

		City of Joburg Property Company South Hills	HOLE No: TP01 Sheet 1 of 1
			JOB NUMBER: WF09071
Scale 1:10		Moist, greyish-brown, <u>loose</u> to <u>medium dense</u> Reworked topsoil and backfill. Abundant roots.	, intact, silty SAND.
		Moist, brownish-orange, <u>medium dense</u> , intact, Backfill. Roots.	clayey silty SAND.
-		Slightly moist, brownish-grey, <u>medium dense</u> , intac Abundant roots. Original ground level.	t, silty SAND. Topsoil.
-	0.50	Very light grey, jointed, stained orange on joint highly weathered soft rock quartzite.	surfaces, <u>very dense</u> ,
		NOTES	
		1) TLB refused on very dense quartzite rock.	
		2) No water seepage.	
		3) No sample taken.	
		4) Individual NHBRC classification: S-R/3F 2E.	
CONTRACTOR : MACHINE : DRILLED BY :	TJ Plant Hire CASE 580-K	INCLINATION : EL DIAM : DATE : DATE : 2009-08-13	.EVATION : 1730 x-coord : 2904144 y-coord : 0091537
TYPE SET BY : SETUP FILE :	DH Wessels	DATE : 03/09/09 09:39 TEXT :C:\DOTFILES\09071 DP.TXT	HOLE No: TP01

			City of Joburg Property Company South Hills	HOLE No: TP02 Sheet 1 of 1
				JOB NUMBER: WF0907
Scale 1:15 _		0.00	Moist, darkish-brownish-grey to greyish-brown, <u>Ic</u> intact, gravelly silty SAND with minor to abundant s quartz gravel and pebbles and scattered highly quartzite cobble, brick, wire and glass fragme uncompacted fill. Abundant roots.	bose to medium dense, sub angular to rounded to totally weathered nts. Uncontrolled and
- - -	20000000000000000000000000000000000000	_ 0.60	Moist, brownish-orange, <u>medium dense</u> , intact, sil abundant sub rounded light brown semi-transluc pebbles and minor angular highly to moderatel cobbles. Seemingly natural pebble marker or hill w roots.	ty sandy GRAVEL with cent quartz gravel and y weathered quartzite rash horizon. Abundant
-		_ 1.00	Moist, brownish-orange to orange-brown, <u>loos</u> slightly open structured , silty fine SAND with angular quartz gravel and minor amounts of per reworked residual quartzite. Roots.	e to <u>medium dense,</u> minor to abundant sub obbles. Seemingly
		_2.40		
			NOTES	
			1) Hole stopped.	
			1) Hole stopped. 2) No water seepage.	
			1) Hole stopped. 2) No water seepage. 3) No sample taken.	
			1) Hole stopped. 2) No water seepage. 3) No sample taken. 4) Individual NHBRC classification: P(fill)-S2/3D 2ABI	Ξ.
CONTRACTOR : MACHINE : DRILLED BY :	TJ Plant Hire CASE 580-K		 Hole stopped. No water seepage. No sample taken. Individual NHBRC classification: P(fill)-S2/3D 2ABI INCLINATION : E DIAM : DATE :	E. ELEVATION : 1693 X-COORD : 2904157 Y-COORD : 0091571

		City of Joburg Property Company South Hills	HOLE No: TP03 Sheet 1 of 1
			JOB NUMBER: WF09071
Scale 1:10 State S	0.00	Moist, darkish-brownish-grey to greyish-brown intact, gravelly silty SAND with minor to abundar quartz gravel and pebbles and scattered hig quartzite cobble, brick, wire and glass frag Abundant roots.	, <u>loose</u> to <u>medium dense</u> , nt sub angular to rounded hly to totally weathered ments. Uncontrolled fill.
	0.35	Moist, brownish-orange, loose to medium der SAND with blotches of grey loose to medium and minor to abundant wire, concrete and brick uncompacted fill. Abundant becoming minor amo	nse, intact, gravelly silty dense, gravelly silty sand rubble. Uncontrolled and punts of roots.
	1.30	Very light grey, jointed, stained orange on jo moderately weathered soft rock quartzite.	int surfaces, <u>very dense</u> ,
		NOTES	
		1) TLB refusal on very dense quartzite rock.	
		2) No water seepage.	
	:	3) No sample taken.	
		4) Individual NHBRC classification: P(fill)-S2-R/3D	2ABEF.
	re	INCLINATION :	ELEVATION - 1700
CONTRACTOR : TJ Plant Hi MACHINE : CASE 580- DRILLED BY :	K	DIAM : DATE :	x-coord : 2904216 y-coord : 0091614

			City of Joburg Property Company South Hills	,	HOLE No: TP04 Sheet 1 of 1
					JOB NUMBER: WF0907
Scale 1:10 -		^{0.00} M wi pe ur	bist, brownish-grey, <u>loose</u> to <u>medium de</u> th abundant sub rounded light brown bbles and minor concrete, wire and l compacted fill. Abundant roots.	<u>ense</u> , inta semi-trar brick rub	ct, gravelly silty SAND slucent quartz gravel, ble. Uncontrolled and
-	<u>ка</u> с	0.30	nist brown to dark brown loose to mer	hium dens	se intact gravelly silty
-		S/ gr ar	AND with abundant sub rounded light avel, pebbles and minor concrete, wire d uncompacted fill. Abundant becoming	brown se and bric minor am	emi-translucent quartz k rubble. Uncontrolled ounts of roots.
-					
-					
-					
-					
-					
-		2.00			
-			DTES		
-		1) H	ole stopped.		
-		2) N	o water seepage.		
		3) N	o sample taken.		
		4) Ir	dividual NHBRC classification: P(fill)-S2/	/3D 2ABE	
CONTRACTOR : MACHINE : DRILLED BY :	TJ Plant Hire CASE 580-K		INCLINATION : DIAM : DATE :	EL	.evation : 1690 x-coord : 2904271 y-coord : 0091563
PROFILED BY :	DH Wessels		<i>DATE</i> : 2009-08-13		HOLE No: TP04

	City of Joburg Property Company South Hills	HOLE No: TP05 Sheet 1 of 1
		JOB NUMBER: WF0907
Scale 1:10 00.25m 0-	^{0.00} Moist, greyish-brown, <u>loose</u> to <u>medium dense</u> , with minor to abundant sub rounded light brow quartz gravel and pebbles. Reworked topsoil. Al	intact, gravelly silty SAND n to grey semi-translucent oundant roots.
	Slightly moist, light pinkish-grey, jointed, stained dense becoming very dense, highly to m becoming medium hard quartzite rock. No roots	d orange on joint surfaces oderately weathered soft
	NOTES	
	1) TLB refusal on very dense quartzite rock.	
	2) No water seepage.	
	3) Disturbed sample taken at 00.25m.	
	4) Individual NHBRC classification: R/3F 2E.	
CONTRACTOR : TJ Plant Hire MACHINE : CASE 580-K	INCLINATION : DIAM :	ELEVATION : 1698 X-COORD : 2904316
PROFILED BY : DH Wessels	DATE : 2009-08-13	HOLE No: TP05
TYPE SET BY : DH Wessels SETUP FILE STANDARD SET	DATE : 03/09/09 09:39 TEXT :C:\DOTFILES\09071 DP.TXT	

		City of Joburg Property Compa South Hills	any	HOLE No: TP06 Sheet 1 of 1
				JOB NUMBER: WF0907
Scale 1:10	^{0.00} Moi grav unc	st, grey, <u>loose</u> , intact, gravelly si vel and concrete, brick and mino ompacted fill. Abundant roots.	lty SAND w r plastic rul	vith abundant quartzite
	0.40 Moi grav cob	st, greyish-brown, <u>loose</u> to <u>medium</u> velly silty SAND with minor to abu bles and small boulders. Uncontrolle	n dense, slig ndant brick, ed and unco	ghtly open structured concrete and quartzite mpacted fill. Roots.
	1.60 Ver NOT	y light grey, jointed, stained oran derately weathered soft rock quartz can also be a large size boulder.	ge on joint zite. Seemin	surfaces, <u>very dense</u> gly bedrock conditions
	1) TLI	B refusal on very dense quartzite be	drock or lar	ge size boulders.
	2) No	water seepage.		
	3) No	sample taken.		
	4) Ind	ividual NHBRC classification: P(fill)-	S2/3D 2ABE	Ξ.
CONTRACTOR : TJ Plant Hire MACHINE : CASE 580-K DRILLED BY :		INCLINATION : DIAM : DATE :	E	:LEVATION : 1717 X-COORD : 2904448 Y-COORD : 0091587
PROFILED BY : DH Wessels		DATE : 2009-08-13		HOLE No: TP06

		Ci	ty of Joburg Property (outh Hills	Company	HOLE No: TP07 Sheet 1 of 1
					JOB NUMBER: WF09071
Scale 1:10 -		D.00 Moist, grey gravel and uncompact D.30 Moist, light	/, <u>loose</u> , intact, grave concrete, brick and ed fill. Abundant roots.	elly silty SAND w minor plastic rul	vith abundant quartzite oble. Uncontrolled and t ash gravel and silty
- - - - - - - - - - - - - - - - - - -		SAND ma fragments. roots.	trix with minor to Uncontrolled and un	abundant glass compacted low d	and brick rubble and ensity ash and fill. Few
		Very light highly weat	grey, jointed, stained hered soft rock quartzi	l orange on joint ite.	surfaces, <u>very dense</u> ,
		NOTES 1) TLB refuse	al on verv dense quartz	zite rock.	
		2) No water s	eepage.		
		3) No sample	taken.		
		4) Individual I	NHBRC classification:	P(fill)-S2/2ABDEF	
L CONTRACTOR : MACHINE : DRILI FD BY	TJ Plant Hire CASE 580-K	ING	CLINATION : DIAM : DATE :	E	LEVATION : 1717 X-COORD : 2904451 Y-COORD : 0091497
PROFILED BY : TYPE SET BY : SETUP FILE :	DH Wessels DH Wessels STANDARD.SET		DATE : 2009-08-13 DATE : 03/09/09 09:39 TEXT :C:\DOTFILES\) \09071_DP.TXT	HOLE No: TP07

		City of Joburg Property Company South Hills	HOLE No: TP08 Sheet 1 of 1
			JOB NUMBER: WF09071
Scale 7:10	0.00	Moist, grey, <u>loose</u> , intact, gravelly silty SAN gravel and concrete, brick and minor plastic uncompacted fill. Abundant roots.	D with abundant quartzite rubble. Uncontrolled and
	22 22 22 22 22 22 22 22 22 22	Moist, light grey to grey, <u>loose</u> , intact, abun SAND matrix with minor to abundant gla fragments and minor large size quartzite cobble Uncontrolled and uncompacted low density ash	dant ash gravel and silty iss and brick rubble and es with scattered boulders. and fill. Few roots.
	1.30	Very light grey, jointed, stained orange on j highly weathered soft rock quartzite.	oint surfaces, <u>very dense</u> ,
		NOTES	
		1) TLB refusal on very dense quartzite rock.	
	:	2) No water seepage.	
	:	3) No sample taken.	
		4) Individual NHBRC classification: P(fill)-S2/3D 2	ABEF.
	Dlant Hira	INCLINATION :	ELEVATION - 1717
CONTRACTOR : TJ F MACHINE : CAS DRILLED BY :	SE 580-K	DIAM : DATE :	x-coord : 2904443 y-coord : 0091491

F09071
quartz
y silty uvium
<u>lense</u> ,
27 06
P09
20 F

			City of South H	Joburg Prop∉ ⊣ills	erty Company		HOLE No: TP10 Sheet 1 of 1
							JOB NUMBER: WF09071
Scale 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		D.00 Moist, gravel	greyish-br I. Reworke	rown, (gravel d topsoil. Ab	ly) silty SAND with undant roots.	ר minc	or sub rounded quartz
	07 07	Moist, SAND and re	brownish) with min)siduum. R	-orange, <u>loo</u> or quartz gra oots.	bse to <u>medium d</u> avel and pebbles.	<u>ense,</u> Slightl	intact, gravelly silty ly reworked colluvium
-		0.40 Very highly	light grey, weathered	jointed, sta d soft rock qu	ined orange on juartzite.	joint s	surfaces, <u>very dense</u> ,
		NOTE	S				
		1) TLB r	efusal on v	very dense q	uartzite rock.		
		2) No w	ater seepa	ige.			
		3) No sa	ample take	n.			
		4) Indivi	dual NHBF	RC classificat	tion: R/3F 2E.		
CONTRACTOR : MACHINE :	TJ Plant Hire CASE 580-K		INCLINAT [TION : DIAM :		EL:	EVATION : 1733 (-COORD : 2904776
DRILLED BY : PROFILED BY :	DH Wessels		D D	DATE: DATE: 2009-08	8-13	У Г	HOLE No: TP10
TYPE SET BY : SETUP FILE :	DH Wessels		ם ז	DATE : 03/09/09 TEXT :C:\DOTF	09:39 FILES\09071_DP.TXT	L	

City of Joburg Property Company South Hills

JOB NUMBER: WF09071

Scale 12 + 1 0.0 1:10 1 + 1 1:2 + 1	⁰ Moist, greyish-brown, (gravelly) silty SAND with n gravel. Reworked topsoil. Abundant roots.	ninor sub rounded quart
	Moist, brownish-orange, <u>loose</u> to <u>medium den</u> SAND with minor quartz gravel and pebbles. Sli and residuum. Roots.	<u>se</u> , intact, gravelly silt ghtly reworked colluviur
	Very light grey, jointed, stained orange on joi highly weathered soft rock quartzite.	nt surfaces, <u>very dense</u>
	NOTES	
	1) TLB refusal on very dense quartzite rock.	
	2) No water seepage.	
	3) No sample taken.	
	4) Individual NHBRC classification: R/3F 2E.	
CONTRACTOR : TJ Plant Hire MACHINE : CASE 580-K	INCLINATION : DIAM : DATE :	ELEVATION : 1739 X-COORD : 2904879 X-COORD : 0091577
PROFILED BY : DH Wessels	DATE: 2009-08-13	HOLE No: TP11
I YPE SET BY : DH Wessels SETUP FILE : STANDARD.SET	DATE : 03/09/09 09:39 TEXT :C:\DOTFILES\09071_DP.TXT	

City of Joburg Property Company
South Hills

JOB NUMBER: WF09071

				·
Scale 1:10		0.00	Moist, greyish-brown, (gravelly) silty SAND with gravel. Reworked topsoil. Abundant roots.	minor sub rounded quartz
		0 15	Moist, brownish-orange, <u>loose</u> to <u>medium de</u> SAND with minor quartz gravel and pebbles. S and residuum. Roots.	nse, intact, gravelly silty lightly reworked colluvium
		_ 0.20	Very light grey, jointed, stained orange on jo highly weathered soft rock quartzite.	pint surfaces, <u>very dense</u> ,
			NOTES	
		1) TLB refusal on very dense quartzite rock.	
		2	2) No water seepage.	
		3	B) No sample taken.	
		4	 Individual NHBRC classification: R/3F 2E. 	
CONTRACTOR . MACHINE . DRILLED BY .	TJ Plant Hire CASE 580-K		INCLINATION : DIAM : DATE :	ELEVATION : 1724 X-COORD : 2904709 Y-COORD : 0091898
PROFILED BY	DH Wessels		DATE : 2009-08-13 DATE : 03/09/09 09:39	HOLE No: TP12
SETUP FILE .	STANDARD.SET		TEXT :C:\DOTFILES\09071_DP.TXT	dot.PLOT 4013 J&W

D03E

City of Joburg Property Company
South Hills

JOB NUMBER: WF09071

Scale 1:10		Moist, greyish-brown, (gravelly) silty SAND with min gravel. Reworked topsoil. Abundant roots.	nor sub rounded quartz
		Moist, brownish-orange, <u>loose</u> to <u>medium dense</u> SAND with minor quartz gravel and pebbles. Sligh and residuum. Roots.	e, intact, gravelly silty tly reworked colluvium
	0.1	Very light grey, jointed, stained orange on joint highly weathered soft rock quartzite.	surfaces, <u>very dense</u> ,
		NOTES	
		1) TLB refusal on very dense quartzite rock.	
		2) No water seepage.	
		3) No sample taken.	
		4) Individual NHBRC classification: R/3F 2E.	
CONTRACTOR	T I Plant Hire		ELEVATION - 1717
MACHINE . DRILLED BY	CASE 580-K	DIAM : DATE :	x-coord : 2904524 y-coord : 0091647
PROFILED BY	: DH Wessels	DATE: 2009-08-13	HOLE No: TP13
SETUP FILE	: STANDARD.SET	TEXT :C:\DOTFILES\09071_DP.TXT	

			City of Jobur South Hills	g Property Company	HOLE No: TP18 Sheet 1 of 1
					JOB NUMBER: WF0907
Scale 1:10		0.00	Moist, light grey with open structured , a uncontrolled and unco	orange patches, <u>loose</u> to ash, glass, quartz gravel ompacted fill. Abundant roo	o <u>medium dense</u> , slightly and rubble. Low densit ts.
		0.13	Moist, light grey with open structured, a uncontrolled and unco	า orange patches, <u>loose</u> to เsh, glass, quartz gravel ompacted fill. Roots.	o <u>medium dense</u> , slightly and rubble. Low densit
	68 68 68 68 68 68 68 68 68 68	. 0.45	Moist, grey, <u>loose</u> gravelly SAND with a sub angular quartz g backfill or reworked pe	to <u>medium dense</u> , open abundant light grey semi-tra gravel and pebbles. Seemi abble marker horizon. Abur	structured , clayey silt anslucent sub rounded to ingly uncompacted grave ndant roots.
		_ 1.05	Moist, brown, <u>dense</u> gravel. Seemingly rew	<u>e</u> , intact, (gravelly) silty S /orked residual quartzite. F	SAND with minor quartz ew roots.
		_ 1.30	Slightly moist, light of becoming very dense weathered quartzite ro	orange-brown to slightly p <u>se</u> , jointed and layered ock. No roots.	binkish light brown, <u>dense</u> , highly to moderately
			NOTES		
		1) TLB refusal on very d	lense quartzite rock.	
		2) No water seepage.		
		3) No sample taken.		
		4) Individual NHBRC cla	assification: S2-S1/2BDEF.	
CONTRACTOR : MACHINE : DRILLED BY :	TJ Plant Hire CASE 580-K		INCLINATION : DIAM : DATE :		ELEVATION : 1752 X-COORD : 2905067 Y-COORD : 0091551
PROFILED BY :	DH Wessels		DATE : 2 DATE : 0 TEVT :	2009-08-13 03/09/09 09:39	HOLE No: TP18

	City of Joburg Property Company South Hills	HOLE No: TP19 Sheet 1 of 1
		JOB NUMBER: WF09071
Scale 8 0.00	⁰ Moist, brownish-grey, <u>loose</u> , intact, gravelly rounded quartz gravel. Reworked topsoil. Abunda	silty SAND with minor ant roots.
MOD MOD	Moist, orange-brown, <u>medium dense</u> , slightly sandy GRAVEL with abundant rounded quartz g supported. Roots.	open structured , silty gravel and pebbles. Clast
	5	nse to <u>dense</u> , intact, silty rtz gravel and pebbles. omerate. Very few to no
0.84	Slightly moist, light pinkish grey, <u>dense</u> becon moderately weathered conglomerate. No roots.	ning very dense, jointed,
	NOTES	
	1) TLB refusal on very dense conglomerate rock.	
	2) No water seepage.	
	3) MOD sample taken at 0.20m0.65m.	
	4) Individual NHBRC classification: S1-S-R/3F 2BD	EF.
CONTRACTOR : TJ Plant Hire MACHINE : CASE 580-K	INCLINATION : DIAM : DATE :	ELEVATION : 1774 X-COORD : 2905363 X-COORD : 0091563
PROFILED BY : PROFILED BY : DH Wessels	DATE: 2009-08-13	HOLE No: TP19
I YPE SET BY : DH Wessels SETUP FILE : STANDARD.SET	DATE : 03/09/09_09:39 TEXT :C:\DOTFILES\09071_DP.TXT	

State 0.00 Moist, brownish-grey, bosse, intact, gravelly silty SAND with min rounded quartz gravel. Reworked topsoil. Abundant roots. 0.20 Moist, orange-brown, medium dense, slightly open structured, s sandy GRAVEL with abundant rounded quartz gravel and pebbles. Cit supported. Roots. 0.20 Moist, orange-brown, medium dense, slightly open structured, s sandy GRAVEL with abundant rounded quartz gravel and pebbles. Cit supported. Roots. 0.20 Slightly moist to moist, brownish-orange, medium dense to dense, inta silty gravelly SAND with minor rounded quartz gravel and pebbles a minor vertical medium dense, open structured, weathering zones. Hig reworked totally weathered conglomerate. Roots in weathering zones. Hig reworked totally weathered conglomerate. Roots in weathering zones. Hig reworked totally weathered conglomerate rock. 1.00 Slightly moist, light orange-brown to slightly pinkish light brown, den becoming very dense, highly becoming moderately weathere conglomerate rock. No roots. 1.20 NOTES 1.20 NOTES 1.20 NO sample taken. 4) Individual NHBRC classification: S1-S-R/2BDEF. 3) No sample taken. 4) Individual NHBRC classification: S1-S-R/2BDEF. MCLINATION:: ELEWATION:: ELEWATION: ELEWATION: MCLINEER MCLINATION: ELEWATION: ELEWATION: MCLINEER MCLINATION:				City of J South H	oburg Property Comp ills	bany	HOLE No: TP20 Sheet 1 of 1
State 1:00 0.00 Moist, brownish-grey, bose intact, gravelly sity SAND with min rounded quartz gravel. Reworked topsoil. Abundant roots. 0:00 0.00 Moist, orange-brown, medium dense, slightly open structured, s sandy GRAVEL with abundant rounded quartz gravel and pebbles. Cli supported. Roots. 0:00 0.70 Slightly moist to moist, brownish-orange, medium dense to dense, inta sity gravely SAND with minor rounded quartz gravel and pebbles a minor vertical medium dense, open structured, weathering zones. Hig reworked totally weathered conglomerate. Roots in weathering zones. Hig reworked totally weathered conglomerate. Roots in weathering zones. Hig reworked totally weathered conglomerate. Roots in weathering zones. Hig reworked totally moist, light orange-brown to slightly pinkish light brown, den becoming very dense, highly becoming moderately weathere conglomerate rock. No roots. 1:00 1:00 1:00 NOTES 1:10 1:20 NOTES 1) TLB refusal on very dense conglomerate rock. 2) No water seepage. 3) No sample taken. 4) Individual NHBRC classification: S1-S-R/2BDEF. 0 0.002 0 0.002 0 0.002 1:20 0.012 0 0.020 1:20 0.021 0 0.021 0 0.021 1:20 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>JOB NUMBER: WF0907</th></t<>							JOB NUMBER: WF0907
0.20 Moist, orange-brown, medium dense, slightly open structured, s sandy GRAVEL with abundant rounded quartz gravel and pebbles. Cli supported. Roots. 0.20 0.70 Slightly moist to moist, brownish-orange, medium dense to dense, inta silty gravely SAND with minor rounded quartz gravel and pebbles. Cli supported. Roots. 0.70 Slightly moist to moist, brownish-orange, medium dense to dense, inta silty gravely SAND with minor rounded quartz gravel and pebbles. A minor vertical medium dense, open structured, weathering zones. Hig reworked totally weathered conglomerate. Roots in weathering zones. Hig reworked totally weathered conglomerate. Roots in weathering zones. Hig reworked totally weathered conglomerate. Roots in weathering zones. 1.00 Slightly moist, light orange-brown to slightly pinkish light brown, den becoming very dense, highly becoming moderately weathere conglomerate rock. No roots. 1.20 NOTES 1) TLB refusal on very dense conglomerate rock. 2) No water seepage. 3) No sample taken. 4) Individual NHBRC classification: S1-S-R/2BDEF. 0/01ELE BW: MOCLIMATION: 2000-02:10 XCOOPD 2005/322 0/01ELE BW: DATE: XCOOPD 2005/322 0/01ELE BW: DATE: XCOOPD 2005/324	Scale 1:10		0.00	Moist, brownish- rounded quartz gr	grey, <u>loose</u> , intact, avel. Reworked tops	, gravelly oil. Abundar	silty SAND with minor nt roots.
Moist, orange-brown, <u>medium dense</u> , slightly open structured, s sandy GRAVEL. with abundant rounded quartz gravel and pebbles. Clasupported. Roots. 0.70 Slightly moist to moist, brownish-orange, <u>medium dense to dense</u> , inta sitty gravely SAND with minor rounded quartz gravel and pebbles a minor vertical <u>medium dense</u> , open structured, weathering zones. Hig reworked totally weathered conglomerate. Roots in weathering zones. Hig reworked totally weathered conglomerate. Roots in weathering zones. Hig reworked totally weathered conglomerate. Roots in weathering zones. Hig reworked totally weathered conglomerate rock. 1.00 Slightly moist, light orange-brown to slightly pinkish light brown, <u>den</u> becoming <u>very dense</u> , highly becoming moderately weather conglomerate rock. No roots. 1.00 NOTES 1.10 NOTES 1.11 Individual NHBRC classification: S1-S-R/2BDEF. COMTRACTOR: TJ Plant Hire Morizme K 2ASE 580-K DAME: 2009-08-13 PRILED BY: Physical BY: DH Wessels DATE: 2009-08-13	-		_ 0.20				
0.70 Slightly moist to moist, brownish-orange, medium dense to dense, inta silty gravelly SAND with minor rounded quartz gravel and pebbles a minor vertical medium dense, open structured, weathering zones. High reworked totally weathered conglomerate. Roots in weathering zones. 0.00 1.00 0.00 Slightly moist, light orange-brown to slightly pinkish light brown, den becoming very dense, highly becoming moderately weathere conglomerate rock. No roots. 0.00 Slightly moist, light orange-brown to slightly pinkish light brown, den becoming very dense, highly becoming moderately weathere conglomerate rock. No roots. 0.00 NOTES 1) TLB refusal on very dense conglomerate rock. 2) No water seepage. 3) No sample taken. 4) Individual NHBRC classification: S1-S-R/2BDEF. CONTRACTOR: TJ Plant Hire Machine: CASE 580-K DIME: VCORD: 2005032 MACHINE: CASE 580-K DIME: VCORD: 20050342 PRILEE BY: DATE: VCORD: 0091642 POFILED BY: DH Wessels		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Moist, orange-bi sandy GRAVEL supported. Roots.	own, <u>medium dens</u> with abundant round	<u>e</u> , slightly ed quartz gr	open structured, silt ravel and pebbles. Class
CONTRACTOR: TJ Plant Hire MACHINE: CASE 580-K DRULED BY: INCLINATION: ELEVATION: 1763 X-COORD: 20908-13	-	00000 00000 00000	_ 0.70				
CONTRACTOR: TJ Plant Hire Britted BY: Britted B	2010 2010 2010 2010 2010 2010 2010 2010			Slightly moist to silty gravelly SAI minor vertical <u>me</u> reworked totally w	moist, brownish-orar ND with minor roun dium dense, open s veathered conglomer	nge, <u>medium</u> ded quartz tructured , v ate. Roots ir	<u>n dense</u> to <u>dense</u> , intact gravel and pebbles and veathering zones. Highl n weathering zones.
Image: Construction of the second	-		_ 1.00	Slightly moist, lig becoming <u>very</u> conglomerate roc	ght orange-brown to <u>dense</u> , highly b k. No roots.	slightly pir ecoming r	nkish light brown, <u>dense</u> noderately weathered
NOTES 1) TLB refusal on very dense conglomerate rock. 2) No water seepage. 3) No sample taken. 4) Individual NHBRC classification: S1-S-R/2BDEF. CONTRACTOR: TJ Plant Hire Individual NHBRC classification: S1-S-R/2BDEF. CONTRACTOR: TJ Plant Hire INCLINATION :: MACHINE: CASE 580-K DIAM : ACHINE: CASE 580-K DIAM : PROFILED BY: DATE : 2009-08-13 HOLE No: TP20		000	_ 1.20				
1) TLB refusal on very dense conglomerate rock. 2) No water seepage. 3) No sample taken. 4) Individual NHBRC classification: S1-S-R/2BDEF. CONTRACTOR: TJ Plant Hire MACHINE: CASE 580-K DRILLED BY: PROFILED BY: DH Wessels DATE: 2009-08-13				NOTES			
2) No water seepage. 3) No sample taken. 4) Individual NHBRC classification: S1-S-R/2BDEF. CONTRACTOR: TJ Plant Hire INCLINATION : ELEVATION : 1763 MACHINE : CASE 580-K DIAM : X-COORD : 2905392 DRILLED BY : DATE : 2009-08-13 Y-COORD : 0091646 PROFILED BY : DH Wessels DATE : 2009-08-13			1	1) TLB refusal on ve	ery dense conglomer	ate rock.	
3) No sample taken. 4) Individual NHBRC classification: S1-S-R/2BDEF. CONTRACTOR : TJ Plant Hire INCLINATION : ELEVATION : 1763 MACHINE : CASE 580-K DIAM : X-COORD : 2905392 DRILLED BY : DATE : Y-COORD : 0091646 PROFILED BY : DH Wessels DATE : 2009-08-13 HOLE No: TP20			2	2) No water seepag	e.		
4) Individual NHBRC classification: S1-S-R/2BDEF.			3	3) No sample taken			
CONTRACTOR : TJ Plant Hire INCLINATION : ELEVATION : 1763 MACHINE : CASE 580-K DIAM : X-COORD : 2905392 DRILLED BY : DATE : Y-COORD : 0091646 PROFILED BY : DH Wessels DATE : 2009-08-13 HOLE No: TP20			4	4) Individual NHBR	C classification: S1-S	-R/2BDEF.	
CONTRACTOR : TJ Plant Hire INCLINATION : ELEVATION : 1763 MACHINE : CASE 580-K DIAM : X-COORD : 2905392 DRILLED BY : DATE : Y-COORD : 0091646 PROFILED BY : DH Wessels DATE : 2009-08-13 HOLE No: TP20							
PROFILED BY : DH Wessels DATE : 2009-08-13 HOLE No: TP20	CONTRACTOR : MACHINE : DRILLED BY :	TJ Plant Hire CASE 580-K		INCLINATI DI DA	ON : AM : TE :		ELEVATION : 1763 X-COORD : 2905392 Y-COORD : 0091646
	PROFILED BY	DH Wessels		DA	TE : 2009-08-13		HOLE No: TP20

			City of Joburg Property Company South Hills	HOLE No: TP21 Sheet 1 of 1
				JOB NUMBER: WF09071
Scale 1:10		0.00	Moist, brownish-grey, <u>loose</u> , intact, gravelly s rounded quartz gravel. Reworked topsoil. Abundar	silty SAND with minor troots.
- - - - - - - - - - - - - - - - - - -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_ 0.10	Moist, orange-brown, <u>medium dense</u> , slightly sandy GRAVEL with abundant rounded quartz gr supported. Roots.	open structured , silty avel and pebbles. Clast
		_ 0.60	Slightly moist to moist, brownish-orange, <u>medium</u> silty gravelly SAND with minor rounded quartz minor vertical <u>medium dense</u> , open structured , w reworked totally weathered conglomerate. Roots in	<u>dense</u> to <u>dense</u> , intact, gravel and pebbles and veathering zones. Highly weathering zones.
		_ 0.90 _ 0.95	Slightly moist, light orange-brown to slightly pir becoming <u>very dense</u> , highly becoming n conglomerate rock. No roots.	kish light brown, <u>dense</u> noderately weathered
			NOTES	
		1) TLB refusal on very dense conglomerate rock.	
		2	 No water seepage. 	
		3	3) No sample taken.	
		2	 Individual NHBRC classification: S1-S-R/2BDEF. 	
CONTRACTOR : MACHINE : DRILLED BY :	TJ Plant Hire CASE 580-K		INCLINATION : DIAM : DATE :	elevation : 1765 x-coord : 2905287 y-coord : 0091681
PROFILED BY : TYPE SET BY : SFTUP FII F ·	DH Wessels DH Wessels STANDARD SFT		DATE : 2009-08-13 DATE : 03/09/09 09:39 TEXT :C:\DOTFILFS\09071 DP.TXT	HOLE No: TP21

		City of Joburg Property Company South Hills	HOLE No: TP23 Sheet 1 of 1
			JOB NUMBER: WF09071
Scale 1:10	0.0	Slightly moist to moist, brownish-grey, loose to gravelly silty SAND. Reworked topsoil. Abundant ro	<u>medium dense</u> , intact, ots.
		Slightly moist to moist, slightly greyish-brown, mir medium dense, intact, silty sandy GRAVEL with ab gravel and pebbles. Pebble marker. Roots.	or mottled orange-red, undant rounded quartz
		Slightly moist to moist, light brown, minor mottle intact, silty SAND with greyish-brown vertical we reworked highly weathered quartzite. Very few roots	ed orange-red, <u>dense</u> , athering zones. Highly s in weathering zones.
	0.3	Slightly moist, light orange-brown to slightly pinl becoming <u>very dense</u> , jointed and layered, l weathered quartzite rock. No roots.	kish light brown, <u>dense</u> highly to moderately
	0.4		
		1) TLB refusal on very dense quartzite rock	
		2) No water seepage.	
		3) No sample taken.	
		4) Individual NHBRC classification: R/3F 2BE.	
CONTRACTOR MACHINE	TJ Plant Hire CASE 580-K	INCLINATION : E DIAM : DATE :	LEVATION : 1768 X-COORD : 2905427 X-COORD : 0092853
PROFILED BY	DH Wessels	DATE: 2009-08-13	HOLE No: TP23
SETUP FILE	: STANDARD.SET	TEXT :C:\DOTFILES\09071_DP.TXT	

			City of J South H	oburg Property Compa ills	any	HOLE No: TP25 Sheet 1 of 1
						JOB NUMBER: WF09071
Scale 00.15m 1:10		0.00	Slightly moist to r quartz gravel and	noist, greyish-brown, <u>k</u> pebbles. Topsoil. Abu	<u>oose</u> , intact, ndant roots	silty SAND with minor
0.15m0.45m		_ 0.15	Slightly moist to r sandy GRAVEL and orange sem Roots.	noist, greyish-brown, <u>lc</u> to silty gravelly sand i-translucent quartz gr	bose to mec with abun ravel and pe	lium dense, intact, silty dant light grey to white abbles. Pebble marker.
0.45m0.60m	2020 2020 2020 2020 2020 2020 2020 202	0.45	Slightly moist, b abundant highly dense vertical w quartzite. Roots.	rownish-orange, <u>dens</u> to totally weathered eathering zones. Rewo	<u>e</u> , intact, g quartzite fr orked residu	ravelly silty SAND with agments and medium al to totally weathered
		_ 0.70	Slightly moist, lightly moist, lightly moderately we	nt greyish-pink to slight athered quartzite rock.	tly orange-p	ink, <u>very dense</u> , highly
			NOTES			
		1	1) TLB refusal on v	ery dense quartzite.		
		2	2) No water seepag	je.		
		3	3) Disturbed sample	es taken at 00.15m, 0).15m0.45	m and 0.45m0.60m.
		4	4) Individual NHBR	C classification: S-R/3	F 2BE.	
CONTRACTOR . MACHINE .	TJ Plant Hire CASE 580-K		INCLINAT D	ION : IAM :	E	LEVATION : 1733 X-COORD : 2904573
DRILLED BY . PROFILED BY .	DH Wessels		Di Di	ATE : ATE : 2009-08-13		Y-COORD : 0092632
TYPE SET BY . SETUP FILE .	: DH Wessels : STANDARD.SET		Di TI	ATE : 03/09/09 09:39 EXT :C:\DOTFILES\09071_L	DP.TXT	

			City of Jobu South Hills	rg Property Company	HOLE No: TP26 Sheet 1 of 1
					JOB NUMBER: WF09071
Scale 1:10		0.00	Slightly moist to mois quartz gravel and peb	t, greyish-brown, <u>loose</u> , intact bbles. Topsoil. Abundant roots	, silty SAND with minor
-		. 0. 10	Slightly moist to moist sandy GRAVEL to s and orange semi-tra Roots.	t, greyish-brown, <u>loose</u> to <u>mec</u> silty gravelly sand with abun inslucent quartz gravel and pe	<u>lium dense</u> , intact, silty dant light grey to white ebbles. Pebble marker.
-	01/0 2010 2010 2010 2010	. 0.25	Slightly moist, browr abundant highly to t dense vertical weath quartzite. Roots.	nish-orange, <u>dense</u> , intact, g totally weathered quartzite fi nering zones. Reworked residu	ravelly silty SAND with agments and medium al to totally weathered
-		0.60	Slightly moist, light gr to moderately weathe	reyish-pink to slightly orange-p red quartzite rock.	ink, <u>very dense</u> , highly
			NOTES		
		1) TLB refusal on very o	dense quartzite.	
		2) No water seepage.		
		3) No sample taken.		
		4) Individual NHBRC cla	assification: S-R/3F 2BE.	
CONTRACTOR :	TJ Plant Hire		INCLINATION :	E	ELEVATION : 1729
MACHINE : DRILLED BY :	CASE 580-K		DIAM : DATE :		x-coord : 2904443 y-coord : 0092503
PROFILED BY : TYPE SET BY :	DH Wessels		DATE : DATE :	2009-08-13 03/09/09 09:39	HOLE No: TP26
SETUP FILE :	STANDARD.SET		TEXT :	C:\DOTFILES\09071_DP.TXT	

		City of Joburg Property Company South Hills	HOLE No: TP27 Sheet 1 of 1
			JOB NUMBER: WF09071
Scale 1:10		Slightly moist to moist, greyish-brown, <u>loose</u> , intact quartz gravel and pebbles. Topsoil. Abundant roots	, silty SAND with minor
		Slightly moist to moist, greyish-brown, <u>loose</u> to <u>mea</u> sandy GRAVEL to silty gravelly sand with abun and orange semi-translucent quartz gravel and pe Roots.	<u>lium dense</u> , intact, silty dant light grey to white ebbles. Pebble marker.
	0.35	Slightly moist, light greyish-pink to slightly orange-p to moderately weathered quartzite rock.	ink, <u>very dense</u> , highly
		NOTES	
		1) TLB refusal on very dense quartzite.	
		2) No water seepage.	
		3) No sample taken.	
		4) Individual NHBRC classification: S-R/3F 2BE.	
			1700
CONTRACTOR : MACHINE : DRILLED BY :	CASE 580-K	INCLINATION : E DIAM : DATE :	LEVATION : 1720 X-COORD : 2904323 Y-COORD : 0092297
PROFILED BY : TYPE SET BY :	DH Wessels	DATE : 2009-08-13 DATE : 03/09/09 09:39	HOLE No: TP27
SETUP FILE	STANDARD SET	TEXT C \DOTEILES\09071 DP TXT	

		City of Joburg Property Company South Hills	LEGEND Sheet 1 of 1
			JOB NUMBER: WF09071
		SCATTERED BOULDERS/occasional boulders	; {SA48}
	000	GRAVEL	{SA02}
	0 0 0 0	GRAVELLY	{SA03}
		SAND	{SA04}
		SANDY	{SA05}
		SILTY	{SA07}
		CLAYEY	{SA09}
		CONGLOMERATE/agglomerate/tillite	{SA10}
		QUARTZITE	{SA15}
		FILL	{SA32}
Name 🔶	KXXXX	DISTURBED SAMPLE	{SA38}
	8	ROOTS	{SA40}
CONTRACTOR : MACHINE :		INCLINATION : DIAM :	ELEVATION : X-COORD :
DRILLED BY : PROFILED BY :	DH Wassala	DATE : DATE : DATE : 03/00/00_00:20	Y-COORD : LEGEND
SETUP FILE :	STANDARD.SET	DATE : 03/09/09 09:39 TEXT :C:\DOTFILES\09071_DP.TXT	SUMMARY OF SYMBOLS

APPENDIX C:

(SOIL PROFILE AND GENERAL PHOTOGRAPHS)

TP01 (a) Photograph

Note: Refusal on quartzite at 0.60m.

TP02 (a)

Note: Refusal on quartzite at 0.60m.

TP02 (b) Photograph

Note: Hole stopped at 2.40m.

Note: Note wire, brick and concrete fill.

Note: Hole stopped at 2.00m in uncompacted fill.

Note: Refusal on possibly quartzite bedrock or large size boulders at 1.70m.

TP06 (b) Photograph

Note: Glass and ash in fill.

TP06 (c) Photograph

Note: Glass, ash, domestic refuse.

TP07 (b) Photograph

TP07 (a)

Note: Refusal on quartzite at 0.90m.

Note: Ash, soil and domestic refuse.

Consulting (Pty) Ltd

TP08 (a) Photograph

Note: Upper ash and boulder fill.

TP09 (b)

TP09 (a) Photograph

Note: Refusal on quartzite at 0.50m.

TP09 (c) Photograph

Note: Refusal on quartzite at 0.50m.

Note: Highly weathered quartzite.

LESHIKA (Pty) Ltd

TP11 (a) Photograph

TP10 (a) Photograph

Note: Refusal on quartzite at 0.50m.

TP12 (a)

Note: Refusal on quartzite at 0.35m.

TP13 (a) Photograph

Note: Refusal on quartzite at 0.20m.

Note: Refusal on quartzite at 0.15m.

Note: Upper residual sandstone backfill and domestic incinerated fill down to +3.00m.

Note: Low density ash and glass.

LESHIKA CONSULTING (Pty) Ltd

TP17 (a) Photograph

Note: Refusal on quartzite at 1.40m.

Note: Upper fill and refusal on quartzite at 1.30m.

TP19 (a) Photograph

Note: Refusal on conglomerate at 0.85m.

TP19 (b) Photograph

Note: Pebble marker originating from weathered conglomerate.

TP20 (b) Photograph

Note: Refusal on conglomerate at 1.20m.

Note: Pebble marker originating from weathered conglomerate.

LESHIKA (Pty) Ltd

TP20 (a) Photograph

TP21 (a) Photograph

Note: Refusal on conglomerate at 0.95m.

TP21 (c)

Photograph

TP21 (b) Photograph

Note: Pebble marker originating from weathered conglomerate.

TP22 (a) Photograph

Note: Totally weathered sandy portion in interlayered conglomerate and quartzite.

Note: Refusal on quartzite at 0.45m.

Note: Ash and glass from domestic refuse.

Note: Refusal on quartzite at 0.70m.

TP26 (a) Photograph

Note: Refusal on quartzite at 0.70m.

TP28 (a)

TP27 (a) Photograph

Note: Refusal on quartzite at 0.35m.

Note: Reach of TLB at 3.00m.

TP28 (b) – Sample for compaction testing Photograph

Note: Upper alluvial material.

LESHIKA (Pty) Ltd

TP28 (c) Photograph

Note: Totally weathered quartzite.

Photograph

GPS094

GPS134 Photograph

Note: GPS134 – Conglomerate rock outcrop.

Sample for compaction testing Photograph

Note: Compaction sample of pebble marker/Hillwash originating from weathered conglomerate to southern portion of the investigated area.

APPENDIX D:

(LABORATORY TEST RESULTS)

HIDROMETER/0914-01.XLS

LOW

HIDROMETER/0914-02.XLS

LOW

HIDROMETER/0914-03.XLS

LOW

90 100

100

HIDROMETER/0914-04.XLS

80

100

CLIENT	:	WSM LESHIKA
PROJECT	:	SOUTH HILLS
PROJECT NO.	:	S09-0914
DATE	:	2009-08-26

pH & CONDUCTIVITY

Soillab Sample No	Sample Position	Sample Depth (m)	рН	Electrical Conductivity S/m
S09-0914-01	TP05	0-0.15	5.53	0.0127
S09-0914-02	TP17	0.7-1.5	7.06	0.0136
S09-0914-03	TP25	0-0.5	4.81	0.0209
S09-0914-04	TP25	0.15-0.45	4.38	0.0119
S09-0914-05	TP25	0.45-0.60	5.07	0.0099
S09-0914-06	MOD A	-	4.82	0.0075
S09-0914-07	MOD B	-	4.85	0.0036
S09-0914-08	MOD C	-	4.65	0.0030

Reg No 1971/000112/07

(PTY) LTD

230 Albertus Street La Montagne 0184 Tel (012) 481-3999

P O Box 72928 Lynnwood Ridge 0040 Fax (012) 481-3812

0914-01.doc

SOIL ANALYSIS BY: SOILLAB (Pty) Ltd Page : 2						
Lab reference No : S09-09	914				Date Printed : 200	09-09-14
Customer : WSM	Leshika		J	ob Number	: S09-0914	
Job Description : SOUT	H HILLS		C	Contract Number	.:	
Road Number:			C)ate	: 2009-08-25	
SAMPLE DESCRIPTION				I I I I I I I I I I I I I I I I I I I		
Sample Number	42003	42004	42005			
Sample Position	MOD A	MOD B	MOD C			
Sample Depth (mm)						
Material Description	DARK RED	DARK BROWN	DUSKY RED			
	ORANGE	QUARTZ	QUARTZ			
	QUARTZ	GRAVEL	GRAVEL			
	SANDY SILT					
Max size of boulder (mm)	-	-	130			
SCREEN ANALYSIS (% PASS)						
75,00 mm	100	100	100			
63,00 mm	100	98	97			
53,00 mm	100	97	94			
37,50 mm	100	89	81			
26,50 mm	100	75	71			
19,00 mm	100	67	63			
13,20 mm	100	55	50			
4,750 mm	99	38	31			
2,000 mm	95	34	21			
0,425 mm	69	24	17			
0,075 mm	37	9	9			
SOIL MORTAR						
Coarse Sand 2,000-0,425	27	30	22			
Coarse Fine Sd 0,425-0,250	13	16	13			
Medium Fine Sd 0,250-0,150	11	15	10			
Fine Fine Sand 0, 150-0,075	10	12	14			
Material <0,075	39	27	41			
CONSTANTS	0.00		0.50			
Grading Modulus	0.99	2.33	2.53			
Direction tente de la deve	21	20	22			
Plasticity Index	8	4	5			
Sand Equivalent	4.0	1.5	2.0			
Classification TPR	A 4 (0)	A 1 c (0)	A 1 a (0)			
Classification - COLTO	A-4 (0)	A-1-a (0)	A-1-a (0)			
	CPD	CPD	GO			
CBR/UCS VALUES	CDR	UDK	CBR			
MOD. AASHTO	2007	2464	2454			
Optimum Moisture Cont (%)	2097	2104	2104			
Moulding Moisture Cont (%)	0.4	0.0	0.0			
Dry Density (kg/m ³)	2008	2164	2151			
% of Max Dry Density	100.0	100 5	2131			
100% Mod CBR/UCS	100.0	70	99.9 80			
% Swell	0.1	0.0	0.0			
NRB	0.1	0.0	0.0			
Dry Density (kg/m³)	1997	20/13	2052			
% of Max Dry Density	95.2	Q/ 8	2052			
100% NRB CBB/UCS	25	34	42			
% Swell	0.1	0.0	0.0			
PROCTOR						
Dry Density (ka/m³)	1891	1940	1944			
% of Max Dry Density	90.2	90.1	90.3			
100% Proc CBR/UCS	15	16	15			
% Swell	0.1	0.0	0.0			
CBR / UCS VALUES						
100% Mod AASHTO	44	66	82			
98% Mod AASHTO	35	51	62			
97% Mod AASHTO	31	45	54			
95% Mod AASHTO	24	35	40			
93% Mod AASHTO	20	25	26			
90% Mod AASHTO	15	16	14			
Soillab No.	S09-0914-06	S09-0914-07	S09-0914-08			

SOILLAB (PTY) LTD Reg No 1971/000112/07

230 Albertus Street La Montagne Tel (012) 481-3801 P O Box 72928 Lynnwood Ridge 0040 Fax (012) 481-3812

APPENDIX E:

(SITE CLASS DESIGNATIONS AND FOUNDATION DESIGNS)

TYPICAL FOUNDATION MATERIAL	CHARACTER OF FOUNDING MATERIAL	EXPECTED RANGE OF TOTAL SOIL MOVEMENTS (mm)	ASSUMED DIFFERENTIAL MOVEMENT (% OF TOTAL)	SITE CLASS
Rock (excluding mud rocks which exhibit swelling to some depth)	STABLE	NEGLIGIBLE	-	R
Fine-grained soils with moderate to very high plasticity (clays, silty clays, clayey silts and sandy clays)	EXPANSIVE SOILS	< 7,5 7,5 – 15 15 – 30 > 30	50% 50% 50% 50%	H H1 H2 H3
Silty sands, sands, sandy and gravelly soils	COMPRESSIBLE AND POTENTIALLY COLLAPSIBLE SOILS	< 5,0 5,0 – 10 > 10	75% 75% 75%	C C1 C2
Fine-grained soils (clayey silts and clayey sands of low plasticity), sands, sandy and gravelly soils	COMPRESSIBLE SOIL	< 10 10 – 20 > 20	50% 50% 50%	S S1 S2
Contaminated soils Controlled fill Dolomitic areas Land fill Marshy areas Mine waste fill Mining subsidence Reclaimed areas Very soft silt/silty clays Uncontrolled fill	VARIABLE	VARIABLE		Ρ

Table 7 : **RESIDENTIAL SITE CLASS DESIGNATIONS (SAICE, 1995)**

NOTES:

1. The classifications C, H, R and S are not intended for dolomitic area sites unless specific investigations are carried out to assess the stability (risk of sinkholes and doline formation) of the dolomites. Where this risk is found to be acceptable, the site shall be designated as Class P (dolomitic areas).

- 2. Site classes are based on the assumption that differential movements, experienced by single-storey residential buildings, expressed as a percentage of the total movements are equal to about 50% for soils that exhibit expansive or compressive characteristics and 75% for soils that exhibit both compressible and collapse characteristics. Where this assumption is incorrect or inappropriate, the total soil movements must be adjusted so that the resultant different movements implied by the table are equal to that which is expected in the field.
- 3. In some instances, it may be more appropriate to use a composite description to describe a site mote fully e.g. C1/H2 or S1 and/or H2. Composite Site Classes may lead to higher differential movements and result in design solutions appropriate to a higher range of differential movement e.g. a Class R/C1 site. Alternatively, a further site investigation may be necessary since the final design solution may depend on the location of the building on a particular site.
- 4. Where it is not possible to provide a single site designation and a composite description is inappropriate, sites may be given multiple descriptions to indicate the range of possible conditions e.g. H-H1-H2 or C1-C2.
- 5. Soft silts and clays usually exhibit high consolidation and low bearing characteristics. Structures founded on these horizons may experience high settlements and such sites should be designated as being Class S1 or S2 as relevant and appropriate.
- 6. Sites containing contaminated soils include those associated with reclaimed mine land, land down-slope of mine tailings and old land fills.
- 7. Where a site is designated as Class P, full particulars relating to the founding conditions on the site must be provided.
- 8. Where sites are designated as being Class P, the reason for such classification shall be placed in brackets immediately after the suffix - i.e. P(contaminated soils). Under certain circumstances, composite description may be more appropriate - e.g. P(dolomite areas)-C1.
- 9. Certain fills may contain contaminates which present a health risk. The nature of such fill should be evaluated and should be clearly demarcated as such.

Table 8 :FOUNDATION DESIGN, BUILDING PROCEDURES AND PRECAUTIONARY
MEASURES FOR SINGLE-STOREY RESIDENTIAL BUILDINGS FOUNDED ON
HORIZONS SUBJECT TO CONSOLIDATION SETTLEMENT (SAICE, 1995)

SITE CLASS	ESTIMATED TOTAL SETTLEMENT (mm)	CONSTRUCTION TYPE	FOUNDATION DESIGN AND BUILDING PROCEDURES	
S	10	Normal	 Normal construction (strip footing or slab-on-the-ground foundations) Good site drainage 	
S1	10-20	Modified normal	 Reinforced strip footings Articulation joints at some internal and all external doors Light reinforcement in masonry Site drainage and service/plumbing precautions Foundation pressure not to exceed 50 kPa 	
		Compaction of in situ soils below individual footings	 Remove in situ material below foundations to a depth and width of 1,5 times the foundation width or to a competent horizon and replace with material compacted to 93% MOD AASHTO density at -1% to +2% of optimum moisture content. Normal construction with lightly reinforced strip foundations and light reinforcement in masonry. 	
		Deep strip foundations	 Normal construction with drainage requirements. Founding on a competent horizon below the problem horizon 	
		Soil raft	 Remove in situ material to 1,0m beyond perimeter of building to a depth and width of 1,5 times the widest foundation or to a competent horizon and replace with material compacted to 93% MOD AASHTO density at -1% to +2% of optimum moisture content. Normal construction with lightly reinforced strip footings and light reinforcement in masonry. 	
S2	>20	Stiffened strip footings, stiffened or cellular raft	 Stiffened strip footing or stiffened or cellular raft with articulation joints or solid lightly reinforced masonry. Bearing pressure not to exceed 50kPa. Fabric reinforcement in floor slabs. Site drainage and service/plumbing precautions. 	
		Deep strip foundations	- As for S1 but with fabric reinforcement in floor slabs	
		Compaction of in- situ soils below individual footings	- As for S1.	
		Piled or pier foundations	 Reinforced concrete ground beams or solid slabs on piled or pier foundations. Ground slabs with fabric reinforcement. Good site drainage. 	
		Soil raft	- As for S1.	

NOTES:

1. Differential settlement assumed to equal 50% of total settlement.

2. The relaxation of some of these requirements, e.g. the reduction or omission of steel or articulation joints, may result in a Category 2 level of expected damage.

3. Account must be taken on sloping site since differential fill heights may lead to greater differential settlements.

4. Settlements induced by loads imposed by deep filling beneath surface beds may necessitate the adoption of a construction type appropriate to a more severe site class.

TABLE 9 : FOUNDATION DESIGN, BUILDING PROCEDURES AND PRECAUTIONARY MEASURES FOR SINGLE-STOREY RESIDENTIAL BUILDINGS FOUNDED ON HORIZONS SUBJECT TO BOTH CONSOLIDATION AND COLLAPSE SETTLEMENT (SAICE, 1995) SETTLEMENT (SAICE, 1995)

SITE CLASS	ESTIMATED TOTAL SETTLEMENT (mm)	CONSTRUCTION TYPE	FOUNDATION DESIGN AND BUILDING PROCEDURES	
С	<5	Normal	 Normal construction (strip footing or slab-on-the-ground foundations) Good site drainage 	
C1	5 – 10	Modified normal	 Reinforced strip footings Articulation joints at some internal and all external doors Light reinforcement in masonry Site drainage and service/plumbing precautions Foundation pressure not to exceed 50 kPa 	
		Compaction of in situ soils below individual footings	 Remove in situ material below foundations to a depth and width of 1,5 times the foundation width or to a competent horizon and replace with material compacted to 93% MOD AASHTO density at -1% to +2% of optimum moisture content. Normal construction with lightly reinforced strip foundations and light reinforcement in masonry. 	
		Deep strip foundations	 Normal construction with drainage requirements. Founding on a competent horizon below the problem horizon 	
		Soil raft	 Remove in situ material to 1,0m beyond perimeter of building to a depth and width of 1,5 times the widest foundation or to a competent horizon and replace with material compacted to 93% MOD AASHTO density at –1% to +2% of optimum moisture content. Normal construction with lightly reinforced strip footings and light reinforcement in masonry. 	
C2	>10	Stiffened strip footings, stiffened or cellular raft	 Stiffened strip footing or stiffened or cellular raft with articulation joints or solid lightly reinforced masonry. Bearing pressure not to exceed 50kPa. Fabric reinforcement in floor slabs. Site drainage and service/plumbing precautions. 	
		Deep strip foundations	- As for C1 but with fabric reinforcement in floor slabs	
		Compaction of in situ soils below individual footings	- As for C1.	
		Piled or pier foundations Soil raft	 Reinforced concrete ground beams or solid slabs on piled or pier foundations. Ground slabs with fabric reinforcement. Good site drainage. 	
			- As for C1.	

NOTES:

1. Differential settlement assumed to equal 75% of total settlement

2. The relaxation of some of these requirements, e.g. the reduction or omission of steel or articulation joints, may result in a Category 2 level of expected damage.

	CONSTRAINT	Most favourable (1)	Intermediate (2)	Least favourable (3)
A	Collapsible Soil	Any collapsible horizon or consecutive horizons totalling a depth of less than 750 mm in thickness.*	Any collapsible horizon or consecutive horizons with a depth of more than 750 mm in thickness.	A least favourable situation for this constraint does not occur.
В	Seepage	Permanent or perched water table more than 1,5 m below ground surface.	Permanent or perched water table less than 1,5 m below ground surface	Swamps and marshes.
С	Active soil	Low soil-heave potential predicted. *	Moderate soil heave potential predicted.	High soil-heave potential predicted.
D	Highly compressible soil	Low soil compressibility expected.*	Moderate soil compressibility expected.	High soil compressibility expected.
E	Erodability of soil	Low.	Intermediate.	High.
F	Difficulty of excavation to 1,5 m depth	Scattered or occasional boulders less than 10% of the total volume.	Rock or hardpan pedocretes between 10 and 40 % of the total volume.	Rock or hardpan pedocretes more than 40 % of the total volume.
G	Undermined ground	Undermining at a depth greater than 100 m below surface (except where total extraction mining has not occurred.)	Old undermined areas to a depth of 100m below surface where stope closure has ceased.	Mining within less than 100 m of surface or where total extraction mining has taken place.
Н	Instability in areas of soluble rock	Possibly unstable.	Probably unstable.	Known sinkholes and dolines
1	Steep slopes	Between 2 and 6 degrees (all regions).	Slopes between 6 and 18 degrees and less than 2 degrees (Natal and Western Cape). Slopes between 6 and 12 degrees and less than 12 degrees (all other regions).	More than 18 degrees (Natal and Western Cape). More than 12 degrees (all other regions).
J	Areas of unstable natural slopes	Low risk.	Intermediate risk.	High risk (especially in areas subject to seismic activity).
К	Areas subject to seismic activity	10% probability of an event less than 100 cm/s ² within 50 years	Mining-induced seismic activity more 100 cm/s ² .	Natural seismic activity more than 100 cm/s ² .
L	Areas subject to flooding	A "most favourable" situation for this constraint does not occur.	Areas adjacent to a known drainage channel or floodplain with slope less than 1%.	Areas within a known drainage channel or floodplain.

Table 10. GEOTECHNICAL CLASSIFICATION FOR URBAN DEVELOPMENT (after Partridge, Wood and Brink 1993)

* These areas are designated as 1A, 1C, 1D, or 1F where localised occurrences of the constraint may arise.

APPENDIX F:

(GUIDELINE MATERIAL PROPERTIES AND SPECIFICATIONS)

Class:	Material description	Subgrade	Subbase	Base	Drainage when compacted	Compaction characteristics	Embankment material	Compressibility when compacted
GW	Well-graded gravel	Good to Excellent	Good	Fair to good	Excellent	Good	Reasonably stable	Low
GP	Poorly grade gravel (<5% fines)	Good to Excellent	Good	Fair to good	Excellent	Good	Reasonably stable	Low
GC	Clayey gravel (>12% fines)	Good	Fair	Poor to not suitable	Poor to practically impervious	Good to fair	Reasonably stable	Low
SP	Poorly graded sand (<5% fines)	Fair to good	Fair	Poor to not suitable	Excellent	Good	Reasonably stable	Low
SM	Silty sand (sand with fines PI<4)	Fair to good	Fair to good	Poor to not suitable	Fair to practically impervious to impervious	Good	Reasonably stable	Low
SC	Clayey sand (>12% fines PI>7)	Fair	Poor	Not suitable	Poor, impervious when compacted	Good to fair	Reasonably stable	Low
CL	Silts and clays (LL<50 & PI>7)	Fair to poor	Not suitable	Not suitable	Practically impervious	Good to fair	Good stability	Medium
ML	Silts and clays (LL<50 & PI<4)	Fair to poor	Not suitable	Not suitable	Semi-pervious to impervious	Good to poor	Poor stability	Medium
СН	Silts and clays (LL>50)	Poor to fair	Not suitable	Not suitable	Practically impervious	Fair to poor	Fair stability	Medium to high
MH	Silts and clays (LL>50)	Poor	Not suitable	Not suitable	Fair to poor, semi- pervious to pervious	Fair to poor	Poor stability	Medium to high

TABLE 11 : Typical material properties	(Unified Soil Classification System)
---	--------------------------------------

Group	G . 11.	Max yd	Optimum	Typical strength characteristics			
symbol	Soil type		(%)	Cu (kPa)	C` (kPa)	ф` (deg.)	tan φ`
GW	Well-graded clean gravels, gravel-sand mixtures	19.7-21.2	11-8	0	0	>38	>0.78
GC	Clayey gravels, poorly graded gravel-sand-clay	18.1-20.5	14-9	0	0	>31	>0.60
SM	Silty sands, poorly graded sand-silt mixtures	17.3-19.7	16-11	50	5	34	0.67
SC	Clayey sands poorly graded sand-clays	16.5-19.7	19-11	75	10	31	0.60
CL	Inorganic clays of low to medium plasticity	15.0-18.9	24-12	85	12	28	0.54
ML	Inorganic silts and clayey silts	15.0-18.9	24-12	65	10	32	0.62
СН	Inorganic clays of high plasticity	11.8-16.5	36-19	100	12	19	0.35

TABLE 12 : Typical material properties after NAVFAC DM7 (1971)

yd - Dry density; Cu - Undrained cohesion; C` - Drained cohesion; φ`(deg.) - Shearing resistance

TABLE 13 : Shear strength parameters for slow draining cohesive materials

	Consistency	Rule of thumb Field identification	Unconfined Compressive Strength (kN/m ²)	UCS (kPa) (COP4)	UCS (kPa) (Terz & Peck)	Approximate SPT (N)
S.1	Very soft	Easily moulded by fingers. Full pick penetration	< 40	< 35	<25	<2
S.2	Soft	Easily penetrated by with thumb. Moulded with strong pressure. 30 to 40mm penetration	40 to 80	35 to 75	25 to 50	2 to 4
S.3	Firm	Indent by thumb with effort. Very difficult to mould with fingers. 10mm penetration	80 to 160	75 to 150	50 to 100	4 to 8
S.4	Stiff	Penetration by thumb nail. Cannot be moulded with fingers. Geologist pick (sharp end) makes slight indentation when pushed.	160 to 320	150 to 300	100 to 200	8 to 15
S.5	Very stiff	Indentation by thumb nail difficult. Slight indentation with blow of geologist pick. Power tools required for excavation.	320 to 1000	> 300	200 to 400	15 to 50

Consistency	Consistency Rule of thumb Field identification		Approx SPT (N)	Approximate \$\phi^`	Typical Dry Density (kg/m ³)
Very loose	Very loose Crumbles very easily when scraped with geological pick		0 to 5	26 to 28	< 1450
Loose Small resistance to penetration by sharp end of geological pick		2 to 4	5 to 10	28 to 30	1 450 to 1 600
Medium dense	Considerable resistance to penetration by sharp end of geological pick	4 to 9	10 to 30	30 to 35	1 600 to 1 750
Very high resistance to penetration of sharp end of Dense geological pick. Requires many blows of pick for excavation		9 to 12.5	30 to 50	35 to 40	1 750 to 1 950
Very dense	High resistance to repeated blows of geological pick. Requires power tools for excavation	< 12.5	> 50	40 to 50	> 1 950

TABLE 14 : Shear strength parameters for quick draining non-cohesive materials

TABLE 15 : Pipe bedding material and backfill (modified summary according to SABS)
 1200)

Pipe Bedding Material							
Grading limits	Pipe cradle	CBR	PI	Compactability factor	Organic material		
Between 0,6 and 19 mm < 30 mm At least 3% at the minimum specified density compacted at OMC*		< 18	> 0.4	No organic material			
Main Fill Material							
 Excludes stones of average dimension exceeding 150mm. Not more than 10% rock or hard fragments retained on a sieve of nominal aperture size 50mm. 							

• Material should not contain large clay lumps that do not break up under the action of compaction equipment

• No or little organic material *OMC – Optimum Moisture Content
Property	Requirements								
Grading Limits % (m/m)	Nominal aggregate size, mm								
passing sieve sizes	75,5	53,0	37,5	26,5	19,0	13,2	9,5	6,7	
75,0	100	100							
53,0	0-50	85-100	100						
37,5	0-25	0-50	85-100	100					
26,5	0-5	0-25	0-50	85-100	100				
19,0		0-5	0-25	0-50	85-100	100			
13,2			0-5	0-25	0-50	85-100	100		
9,5				0-5	0-25	0-55	85-100	100	
6,7					0-5	0-25	0-55	85-100	
4,75						0-5	0-25	0-55	
2,36							0-5	0-25	
1,18								0-5	
Dust Content (Material passing 75 um sieve, mass percentage, max)	2,0								
Flakiness index % max	35								
10% FACT kN, min	110 for aggregates used in concrete subject to surface abrasion, and for structural elements of reinforced concrete and pre-stressed concrete								
	70 for aggregates used in concrete not subject to surface abrasion								
Aggregate crushing value, % max					29				

TABLE 16 : Summary of specified requirements for coarse aggregate (stone) used in the production of both readymix and site-batched concrete.

TABLE 17 : Summary of specified requirements for fine aggregate (sand) used in the production of both readymix and site-batched concrete.

Property	Requirements		
Grading limits, % (m/m) passing sieve sizes, mm	Natural Sand	Crushed Sand	
4,75	90-100		
0,150	5 - 25		
Methylene blue absorption value,	0,7		
max			
Clay content	2,0		
(Material of particle size smaller			
than 5 um, mass percentage, max)			
Dust content		10	
(Material passing 75 um sieve,	5		
mass percentage, max)			
Fineness modulus	1,2 - 3,5		

D (SABS requirements				
Property	Plaster	Mortar			
Grading limits, %					
(m/m) passing sieve					
sizes, mm					
4,75	100	100			
2,36	90-100	90-100			
1,18	70-100	70-100			
0,600	40-90	40-100			
0,300	5-65	5-85			
0,150	5-20	5-35			
Dust content					
(Material passing 75	75	12.5			
um sieve, mass	7,5	12,5			
percentage, max)					
Clay content					
(Material of particle	2.0				
size smaller than 5 um,	2,0				
mass percentage, max)					
Drying shrinkage of	0.10	0.12			
mix, % max	0,10	0,12			

TABLE 18 : Summary of specified requirements for sands used in the production of mortars and plasters.